Answer to Question #121886 in Analytic Geometry for Samson

Question #121886
If
α=3i−j+2k,

β=2i+j−k and
,
γÌ…=i−2j+2k, find

α×β×γ.
1
Expert's answer
2020-06-15T19:11:51-0400

we know that if

α\overrightarrow{\alpha} =x1i^+y1j^+z1k^= x_1\hat{i}+y_1\hat{j}+z_1\hat{k} and β=x2i^+y2j^+z2k^\overrightarrow{\beta}=x_2\hat{i}+y_2\hat{j}+z_2\hat{k}

then α\overrightarrow{\alpha } x β=i^j^k^x1y1z1x2y2z2\overrightarrow{\beta} = \begin{vmatrix} \hat{i} & \hat{j} &\hat{k} \\ x_1 & y_1 &z_1\\ x_2&y_2&z_2 \end{vmatrix}


Here α=3i^j^+2k^\overrightarrow{\alpha} = 3\hat{i}-\hat{j}+2\hat{k} , β=2i^+j^k^\overrightarrow{\beta}=2\hat{i}+\hat{j}-\hat{k} and γ=i^2j^+2k^\overrightarrow{\gamma}= \hat{i}-2\hat{j}+2\hat{k}

so,

α\overrightarrow{\alpha} x β=i^j^k^312211\overrightarrow{\beta} = \begin{vmatrix} \hat{i} & \hat{j} &\hat{k} \\ 3 & -1 &2\\ 2&1&-1 \end{vmatrix}

expanding along Row 1.


α\overrightarrow{\alpha} x β=i^1211j^3221+k^3121\overrightarrow{\beta}= \hat{i}\begin{vmatrix} -1 & 2 \\ 1 & -1 \end{vmatrix}-\hat{j}\begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix}+\hat{k}\begin{vmatrix} 3 & -1 \\ 2 & 1 \end{vmatrix}


=i^(12)j^(34)+k^(3+2)= \hat{i}(1-2)-\hat{j}(-3-4)+\hat{k}(3+2)

=i^+7j^+5k^=-\hat{i}+7\hat{j}+5\hat{k} .


Following the same way α\overrightarrow{\alpha} x β\overrightarrow{\beta} x γ\overrightarrow{\gamma} can be determined .


so ,

α\overrightarrow{\alpha} x β\overrightarrow{\beta} x γ=\overrightarrow{\gamma}= i^j^k^175122\begin{vmatrix} \hat{i} & \hat{j} &\hat{k} \\ -1 & 7 &5\\ 1&-2&2 \end{vmatrix}

=i^7522j^1512+k^1712=\hat{i}\begin{vmatrix} 7& 5 \\ -2 & 2 \end{vmatrix}-\hat{j}\begin{vmatrix} -1 & 5 \\ 1 & 2 \end{vmatrix}+\hat{k}\begin{vmatrix} -1 & 7 \\ 1 & -2 \end{vmatrix}

=i^(14+10)j^(25)+k^(27)=\hat{i}(14+10)-\hat{j}(-2-5)+\hat{k}(2-7)

=24i^+7j^5k^=24\hat{i}+7\hat{j}-5\hat{k}


The answer is :

α\therefore \overrightarrow{\alpha} x β\overrightarrow{\beta} x γ=24i^+7j^5k^.\overrightarrow{\gamma}=24\hat{i}+7\hat{j}-5\hat{k}.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment