we know that if
"\\overrightarrow{\\alpha}" "= x_1\\hat{i}+y_1\\hat{j}+z_1\\hat{k}" and "\\overrightarrow{\\beta}=x_2\\hat{i}+y_2\\hat{j}+z_2\\hat{k}"
then "\\overrightarrow{\\alpha }" x "\\overrightarrow{\\beta} = \\begin{vmatrix}\n \\hat{i} & \\hat{j} &\\hat{k} \\\\\n x_1 & y_1 &z_1\\\\\nx_2&y_2&z_2\n\\end{vmatrix}"
Here "\\overrightarrow{\\alpha} = 3\\hat{i}-\\hat{j}+2\\hat{k}" , "\\overrightarrow{\\beta}=2\\hat{i}+\\hat{j}-\\hat{k}" and "\\overrightarrow{\\gamma}= \\hat{i}-2\\hat{j}+2\\hat{k}"
so,
"\\overrightarrow{\\alpha}" x "\\overrightarrow{\\beta} = \\begin{vmatrix}\n \\hat{i} & \\hat{j} &\\hat{k} \\\\\n 3 & -1 &2\\\\\n2&1&-1\n\\end{vmatrix}"
expanding along Row 1.
"\\overrightarrow{\\alpha}" x "\\overrightarrow{\\beta}= \\hat{i}\\begin{vmatrix}\n -1 & 2 \\\\\n 1 & -1\n\\end{vmatrix}-\\hat{j}\\begin{vmatrix}\n 3 & 2 \\\\\n 2 & -1\n\\end{vmatrix}+\\hat{k}\\begin{vmatrix}\n 3 & -1 \\\\\n 2 & 1\n\\end{vmatrix}"
"= \\hat{i}(1-2)-\\hat{j}(-3-4)+\\hat{k}(3+2)"
"=-\\hat{i}+7\\hat{j}+5\\hat{k}" .
Following the same way "\\overrightarrow{\\alpha}" x "\\overrightarrow{\\beta}" x "\\overrightarrow{\\gamma}" can be determined .
so ,
"\\overrightarrow{\\alpha}" x "\\overrightarrow{\\beta}" x "\\overrightarrow{\\gamma}=" "\\begin{vmatrix}\n \\hat{i} & \\hat{j} &\\hat{k} \\\\\n -1 & 7 &5\\\\\n1&-2&2\n\\end{vmatrix}"
"=\\hat{i}\\begin{vmatrix}\n 7& 5 \\\\\n -2 & 2\n\\end{vmatrix}-\\hat{j}\\begin{vmatrix}\n -1 & 5 \\\\\n 1 & 2\n\\end{vmatrix}+\\hat{k}\\begin{vmatrix}\n -1 & 7 \\\\\n 1 & -2\n\\end{vmatrix}"
"=\\hat{i}(14+10)-\\hat{j}(-2-5)+\\hat{k}(2-7)"
"=24\\hat{i}+7\\hat{j}-5\\hat{k}"
The answer is :
"\\therefore \\overrightarrow{\\alpha}" x "\\overrightarrow{\\beta}" x "\\overrightarrow{\\gamma}=24\\hat{i}+7\\hat{j}-5\\hat{k}."
Comments
Leave a comment