we know that if
α =x1i^+y1j^+z1k^ and β=x2i^+y2j^+z2k^
then α x β=∣∣i^x1x2j^y1y2k^z1z2∣∣
Here α=3i^−j^+2k^ , β=2i^+j^−k^ and γ=i^−2j^+2k^
so,
α x β=∣∣i^32j^−11k^2−1∣∣
expanding along Row 1.
α x β=i^∣∣−112−1∣∣−j^∣∣322−1∣∣+k^∣∣32−11∣∣
=i^(1−2)−j^(−3−4)+k^(3+2)
=−i^+7j^+5k^ .
Following the same way α x β x γ can be determined .
so ,
α x β x γ= ∣∣i^−11j^7−2k^52∣∣
=i^∣∣7−252∣∣−j^∣∣−1152∣∣+k^∣∣−117−2∣∣
=i^(14+10)−j^(−2−5)+k^(2−7)
=24i^+7j^−5k^
The answer is :
∴α x β x γ=24i^+7j^−5k^.
Comments
Leave a comment