we know that if
α → \overrightarrow{\alpha} α = x 1 i ^ + y 1 j ^ + z 1 k ^ = x_1\hat{i}+y_1\hat{j}+z_1\hat{k} = x 1 i ^ + y 1 j ^ + z 1 k ^ and β → = x 2 i ^ + y 2 j ^ + z 2 k ^ \overrightarrow{\beta}=x_2\hat{i}+y_2\hat{j}+z_2\hat{k} β = x 2 i ^ + y 2 j ^ + z 2 k ^
then α → \overrightarrow{\alpha } α x β → = ∣ i ^ j ^ k ^ x 1 y 1 z 1 x 2 y 2 z 2 ∣ \overrightarrow{\beta} = \begin{vmatrix}
\hat{i} & \hat{j} &\hat{k} \\
x_1 & y_1 &z_1\\
x_2&y_2&z_2
\end{vmatrix} β = ∣ ∣ i ^ x 1 x 2 j ^ y 1 y 2 k ^ z 1 z 2 ∣ ∣
Here α → = 3 i ^ − j ^ + 2 k ^ \overrightarrow{\alpha} = 3\hat{i}-\hat{j}+2\hat{k} α = 3 i ^ − j ^ + 2 k ^ , β → = 2 i ^ + j ^ − k ^ \overrightarrow{\beta}=2\hat{i}+\hat{j}-\hat{k} β = 2 i ^ + j ^ − k ^ and γ → = i ^ − 2 j ^ + 2 k ^ \overrightarrow{\gamma}= \hat{i}-2\hat{j}+2\hat{k} γ = i ^ − 2 j ^ + 2 k ^
so,
α → \overrightarrow{\alpha} α x β → = ∣ i ^ j ^ k ^ 3 − 1 2 2 1 − 1 ∣ \overrightarrow{\beta} = \begin{vmatrix}
\hat{i} & \hat{j} &\hat{k} \\
3 & -1 &2\\
2&1&-1
\end{vmatrix} β = ∣ ∣ i ^ 3 2 j ^ − 1 1 k ^ 2 − 1 ∣ ∣
expanding along Row 1.
α → \overrightarrow{\alpha} α x β → = i ^ ∣ − 1 2 1 − 1 ∣ − j ^ ∣ 3 2 2 − 1 ∣ + k ^ ∣ 3 − 1 2 1 ∣ \overrightarrow{\beta}= \hat{i}\begin{vmatrix}
-1 & 2 \\
1 & -1
\end{vmatrix}-\hat{j}\begin{vmatrix}
3 & 2 \\
2 & -1
\end{vmatrix}+\hat{k}\begin{vmatrix}
3 & -1 \\
2 & 1
\end{vmatrix} β = i ^ ∣ ∣ − 1 1 2 − 1 ∣ ∣ − j ^ ∣ ∣ 3 2 2 − 1 ∣ ∣ + k ^ ∣ ∣ 3 2 − 1 1 ∣ ∣
= i ^ ( 1 − 2 ) − j ^ ( − 3 − 4 ) + k ^ ( 3 + 2 ) = \hat{i}(1-2)-\hat{j}(-3-4)+\hat{k}(3+2) = i ^ ( 1 − 2 ) − j ^ ( − 3 − 4 ) + k ^ ( 3 + 2 )
= − i ^ + 7 j ^ + 5 k ^ =-\hat{i}+7\hat{j}+5\hat{k} = − i ^ + 7 j ^ + 5 k ^ .
Following the same way α → \overrightarrow{\alpha} α x β → \overrightarrow{\beta} β x γ → \overrightarrow{\gamma} γ can be determined .
so ,
α → \overrightarrow{\alpha} α x β → \overrightarrow{\beta} β x γ → = \overrightarrow{\gamma}= γ = ∣ i ^ j ^ k ^ − 1 7 5 1 − 2 2 ∣ \begin{vmatrix}
\hat{i} & \hat{j} &\hat{k} \\
-1 & 7 &5\\
1&-2&2
\end{vmatrix} ∣ ∣ i ^ − 1 1 j ^ 7 − 2 k ^ 5 2 ∣ ∣
= i ^ ∣ 7 5 − 2 2 ∣ − j ^ ∣ − 1 5 1 2 ∣ + k ^ ∣ − 1 7 1 − 2 ∣ =\hat{i}\begin{vmatrix}
7& 5 \\
-2 & 2
\end{vmatrix}-\hat{j}\begin{vmatrix}
-1 & 5 \\
1 & 2
\end{vmatrix}+\hat{k}\begin{vmatrix}
-1 & 7 \\
1 & -2
\end{vmatrix} = i ^ ∣ ∣ 7 − 2 5 2 ∣ ∣ − j ^ ∣ ∣ − 1 1 5 2 ∣ ∣ + k ^ ∣ ∣ − 1 1 7 − 2 ∣ ∣
= i ^ ( 14 + 10 ) − j ^ ( − 2 − 5 ) + k ^ ( 2 − 7 ) =\hat{i}(14+10)-\hat{j}(-2-5)+\hat{k}(2-7) = i ^ ( 14 + 10 ) − j ^ ( − 2 − 5 ) + k ^ ( 2 − 7 )
= 24 i ^ + 7 j ^ − 5 k ^ =24\hat{i}+7\hat{j}-5\hat{k} = 24 i ^ + 7 j ^ − 5 k ^
The answer is :
∴ α → \therefore \overrightarrow{\alpha} ∴ α x β → \overrightarrow{\beta} β x γ → = 24 i ^ + 7 j ^ − 5 k ^ . \overrightarrow{\gamma}=24\hat{i}+7\hat{j}-5\hat{k}. γ = 24 i ^ + 7 j ^ − 5 k ^ .
Comments