Given
α=i+2j+3k,
β=2i+j−k find
α×β
Solution.
α=i+2j+3k;α=i+2j+3k;α=i+2j+3k;
β=2i+j−kβ=2i+j−kβ=2i+j−k;
α×β=∣ijk12321−1∣=i(2⋅(−1)−1⋅3)−j(1⋅(−1)−2⋅3)+α×β=\begin{vmatrix} i & j&k \\ 1& 2&3\\ 2&1&-1 \end{vmatrix}=i(2\sdot(-1)-1\sdot3)-j(1\sdot(-1)-2\sdot3)+α×β=∣∣i12j21k3−1∣∣=i(2⋅(−1)−1⋅3)−j(1⋅(−1)−2⋅3)+
+k(1⋅1−2⋅2)=i(−5)−j(−7)+k(−3)=−5i+7j−3k;+k(1\sdot1-2\sdot2)=i(-5)-j(-7)+k(-3)=-5i+7j-3k;+k(1⋅1−2⋅2)=i(−5)−j(−7)+k(−3)=−5i+7j−3k;
Answer: α×β=−5i+7j−3k.α×β=-5i+7j-3k.α×β=−5i+7j−3k.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment