If the point "P(acos\\theta,bsin\\theta)" satisfies the equation "\\frac{x^2}{a^2}+\\frac{y^2}{b^2}=1" , then it lies on the given ellipse .
Now "\\frac{x^2}{a^2}+\\frac{y^2}{b^2} = \\frac{(acos\\theta)^2}{a^2}+\\frac{(bsin\\theta)^2}{b^2}"
"= \\frac{a^2cos^2\\theta}{a^2}+\\frac{b^2sin^2\\theta}{b^2}"
"= cos^2\\theta+sin^2\\theta"
"=1."
"\\therefore" point "P(acos\\theta,bsin\\theta)" lies on the given ellipse. (PROVED).
Now the equation of the tangent at the point "P(acos\\theta,bsin\\theta)" is given by
"\\frac{x*acos\\theta}{a^2}+\\frac{y*bsin\\theta}{b^2}=1\\\\or, \\space \\frac{xcos\\theta}{a}+\\frac{ysin\\theta}{b}=1\\\\or, \\space \\frac{bxcos\\theta+aysin\\theta}{ab}=1\\\\or, \\space bxcos\\theta+aysin\\theta=ab\\\\or, \\space aysin\\theta=-bxcos\\theta+ab\\\\or, \\space y=-\\frac{bxcos\\theta}{asin\\theta}+\\frac{ab}{asin\\theta}\\\\or, \\space y=-(\\frac{b}{a}tan\\theta)x +bcosec\\theta."
"\\therefore" Gradient of the tangent at the point "P(acos\\theta,bsin\\theta)" is "-(\\frac{b}{a}tan\\theta)" . Answer.
Equation of Normal: We know that normal is perpendicular to the tangent..
so if equation of tangent is "bxcos\\theta+aysin\\theta=ab" then equation of normal is of the form
"axsin\\theta-bycos\\theta=k, \\space where \\space k \\space is \\space constant."
Now as this normal is passing through "P(acos\\theta,bsin\\theta)" ...by putting this coordinate into the equation of normal we get the value of "k" .
"\\therefore a*acos\\theta*sin\\theta-b*bsin\\theta*cos\\theta=k\\\\or, \\space k=a^2sin\\theta cos\\theta-b^2sin\\theta cos\\theta\\\\or, \\space k= (a^2-b^2)sin\\theta cos\\theta"
"\\therefore" The equation of normal at the point "P(acos\\theta,bsin\\theta)" is given by
"axsin\\theta-bycos\\theta= (a^2-b^2)sin\\theta cos\\theta." PROVED.
Now if the equation of normal is passing through B(0,b) then we have
"a*0*sin\\theta-b*b*cos\\theta=(a^2-b^2)sin\\theta cos\\theta\\\\or, \\space -b^2cos\\theta=(a^2-b^2)sin\\theta cos\\theta.\\\\ or, \\space -b^2=(a^2-b^2)sin\\theta \\\\or, \\space sin\\theta = \\frac{-b^2}{a^2-b^2}"
Now as we know "-1\\leq sin\\theta,\\\\"
"\\therefore -1\\leq \\frac{-b^2}{a^2-b^2}\\\\or, 1\\geq \\frac{b^2}{a^2-b^2}\\\\ or, a^2-b^2 \\geq b^2\\\\or, a^2 \\geq2b^2" PROVED.
Now tangent at "P(acos\\theta,bsin\\theta)" which is "bxcos\\theta+aysin\\theta=ab" , meets the Y axis at Q.
putting x=0 ,we get
"0+aysin\\theta=ab\\\\or, \\space ysin\\theta=b\\\\or, \\space y=\\frac{ b}{sin\\theta}.\\\\"
"\\therefore" The coordinate of Q is "(0,\\frac{b}{sin\\theta})" .
"BQ= \\bigg(\\frac{b}{sin\\theta}-b\\bigg)\\\\BQ=\\bigg(\\frac{b}{\\frac{-b^2}{a^2-b^2}}-b\\bigg)"
"BQ= b(\\frac{b^2-a^2}{b^2}-1)\\\\BQ= b*(\\frac{b^2-a^2-b^2}{b^2})\\\\BQ=\\frac{-a^2}{b}"
"\\therefore |BQ|= \\frac{a^2}{b}" PROVED.
After solving question i found that BQ is "\\frac{a^2}{b}" but in a given question it was given as "\\frac{a^2}{b^2}" .. This is a mistake.
Comments
Leave a comment