Transformation (x,y,z)(x,y,z)(x,y,z) to (ρ,θ,z)(\rho,\theta,z)(ρ,θ,z)
ρ=x2+y2\rho=\sqrt{x^2+y^2}ρ=x2+y2
θ=tan−1yx\theta=tan^{-1}{\frac y x}θ=tan−1xy
z=zz=zz=z
i) ρ=62\rho=6\sqrt{2}ρ=62
θ=tan−11=π/4\theta=tan^{-1}1=\pi/4θ=tan−11=π/4
z=8z=8z=8
ii) ρ=2+1=3\rho=\sqrt{2+1}=\sqrt{3}ρ=2+1=3
θ=tan−112\theta=tan^{-1}{{\frac 1 {\sqrt2}}}θ=tan−121
z=1z=1z=1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment