Solid: f ( x , y , z ) = 2 x 2 − y 2 + 8 z 2 − 11 = 0 f(x,y,z)=2x^2 −y^2 +8z^2 - 11=0 f ( x , y , z ) = 2 x 2 − y 2 + 8 z 2 − 11 = 0
Line: x − 3 = z = y + 1 2 x−3 = z = \frac{y+1}{2} x − 3 = z = 2 y + 1
Determine the point of intersection.
2 x 2 − y 2 + 8 z 2 = 11 z = x − 3 z = y + 1 2 \begin{matrix}
2x^2 −y^2 +8z^2 & = &11 \\
z & = &x-3 \\
z &= &\frac{y+1}{2}
\end{matrix} 2 x 2 − y 2 + 8 z 2 z z = = = 11 x − 3 2 y + 1
2 x 2 − y 2 + 8 z 2 = 11 z = x − 3 y = 2 z − 1 \begin{matrix}
2x^2 −y^2 +8z^2 & = &11 \\
z & = &x-3 \\
y &= &2z-1
\end{matrix} 2 x 2 − y 2 + 8 z 2 z y = = = 11 x − 3 2 z − 1
2 x 2 − y 2 + 8 z 2 = 11 z = x − 3 y = 2 ( x − 3 ) − 1 \begin{matrix}
2x^2 −y^2 +8z^2 & = &11 \\
z & = &x-3 \\
y &= &2(x-3)-1
\end{matrix} 2 x 2 − y 2 + 8 z 2 z y = = = 11 x − 3 2 ( x − 3 ) − 1
2 x 2 − y 2 + 8 z 2 = 11 z = x − 3 y = 2 x − 7 \begin{matrix}
2x^2 −y^2 +8z^2 & = &11 \\
z & = &x-3 \\
y &= &2x-7
\end{matrix} 2 x 2 − y 2 + 8 z 2 z y = = = 11 x − 3 2 x − 7
Substitute z = x − 3 and y = 2 x − 7 z=x-3 \text{ and } y=2x-7 z = x − 3 and y = 2 x − 7 into the first equation.
2 x 2 − ( 2 x − 7 ) 2 + 8 ( x − 3 ) 2 = 11 2x^2 - (2x-7)^2 + 8(x-3)^2=11 2 x 2 − ( 2 x − 7 ) 2 + 8 ( x − 3 ) 2 = 11
Clear the parentheses and simplify.
3 x 2 − 10 x + 6 = 0 3x^2 - 10x + 6 =0 3 x 2 − 10 x + 6 = 0
Using the formula for the discriminant, obtain the solution of this equation.
x 1 = 5 3 + 7 3 , x 2 = 5 3 − 7 3 x_1= \frac{5}{3} + \frac{\sqrt{7}}{3}, \quad x_2= \frac{5}{3} - \frac{\sqrt{7}}{3} x 1 = 3 5 + 3 7 , x 2 = 3 5 − 3 7
Determine the y and z . y \text{ and }z. y and z .
z 1 = 5 3 + 7 3 − 3 = − 4 3 + 7 3 , z 2 = − 4 3 − 7 3 y 1 = 2 ( − 4 3 + 7 3 ) − 1 = − 11 3 + 2 7 3 , y 2 = − 11 3 − 2 7 3 z_{1} = \frac{5}{3} +\frac{\sqrt{7}}{3} - 3 = -\frac{4}{3} + \frac{\sqrt{7}}{3}, \quad z_{2} = -\frac{4}{3} - \frac{\sqrt{7}}{3} \\
y_{1} = 2( -\frac{4}{3} + \frac{\sqrt{7}}{3}) - 1 = -\frac{11}{3} + \frac{2\sqrt{7}}{3}, \quad y_{2} = -\frac{11}{3} -\frac{2\sqrt{7}}{3} z 1 = 3 5 + 3 7 − 3 = − 3 4 + 3 7 , z 2 = − 3 4 − 3 7 y 1 = 2 ( − 3 4 + 3 7 ) − 1 = − 3 11 + 3 2 7 , y 2 = − 3 11 − 3 2 7
Thus, obtain two points of intersection P 1 = ( 5 3 + 7 3 , − 11 3 + 2 7 3 , − 4 3 + 7 3 ) and P 2 = ( 5 3 − 7 3 , − 11 3 − 2 7 3 , − 4 3 − 7 3 ) . P_{1} = \left( \frac{5}{3} + \frac{\sqrt{7}}{3}, -\frac{11}{3} + \frac{2\sqrt{7}}{3}, -\frac{4}{3} + \frac{\sqrt{7}}{3}\right) \text{ and } P_{2} = \left( \frac{5}{3} - \frac{\sqrt{7}}{3}, -\frac{11}{3} - \frac{2\sqrt{7}}{3}, -\frac{4}{3} - \frac{\sqrt{7}}{3}\right). P 1 = ( 3 5 + 3 7 , − 3 11 + 3 2 7 , − 3 4 + 3 7 ) and P 2 = ( 3 5 − 3 7 , − 3 11 − 3 2 7 , − 3 4 − 3 7 ) .
The equation of normal to solid at the point P 1 P_{1} P 1 is
x − x 1 f x ( x 1 , y 1 , z 1 ) = y − y 1 f y ( x 1 , y 1 , z 1 ) = z − z 1 f z ( x 1 , y 1 , z 1 ) \frac{x-x_1}{f_{x}(x_1,y_1,z_1)} = \frac{y-y_1}{f_{y}(x_1,y_1,z_1)} = \frac{z-z_1}{f_{z}(x_1,y_1,z_1)} f x ( x 1 , y 1 , z 1 ) x − x 1 = f y ( x 1 , y 1 , z 1 ) y − y 1 = f z ( x 1 , y 1 , z 1 ) z − z 1
where f x , f y , f z f_{x}, f_y, f_z f x , f y , f z are the partial derivatives of f f f with respect to x , y , z x,y,z x , y , z accordingly. Determine the partial derivatives.
f x = 4 x f y = − 2 y f z = 16 z f_x = 4x \\
f_y = -2y\\
f_z = 16z f x = 4 x f y = − 2 y f z = 16 z
Therefore, the equation of the normal to the solid at the first point is
x − 5 3 − 7 3 4 ⋅ ( 5 3 + 7 3 ) = y + 11 3 − 2 7 3 − 2 ⋅ ( − 11 3 + 2 7 3 ) = z + 4 3 − 7 3 16 ⋅ ( − 4 3 + 7 3 ) \frac{x-\frac{5}{3}-\frac{\sqrt{7}}{3}}{4\cdot(\frac{5}{3}+\frac{\sqrt{7}}{3})}= \frac{y+\frac{11}{3}-\frac{2\sqrt{7}}{3}}{-2\cdot(-\frac{11}{3}+\frac{2\sqrt{7}}{3})} = \frac{z+\frac{4}{3}-\frac{\sqrt{7}}{3}}{16\cdot(-\frac{4}{3}+\frac{\sqrt{7}}{3})} 4 ⋅ ( 3 5 + 3 7 ) x − 3 5 − 3 7 = − 2 ⋅ ( − 3 11 + 3 2 7 ) y + 3 11 − 3 2 7 = 16 ⋅ ( − 3 4 + 3 7 ) z + 3 4 − 3 7
and the equation of the normal to the solid at the second point is
x − 5 3 + 7 3 4 ⋅ ( 5 3 − 7 3 ) = y + 11 3 + 2 7 3 − 2 ⋅ ( − 11 3 − 2 7 3 ) = z + 4 3 + 7 3 16 ⋅ ( − 4 3 − 7 3 ) \frac{x-\frac{5}{3}+\frac{\sqrt{7}}{3}}{4\cdot(\frac{5}{3}-\frac{\sqrt{7}}{3})}= \frac{y+\frac{11}{3}+\frac{2\sqrt{7}}{3}}{-2\cdot(-\frac{11}{3}-\frac{2\sqrt{7}}{3})} = \frac{z+\frac{4}{3}+\frac{\sqrt{7}}{3}}{16\cdot(-\frac{4}{3}-\frac{\sqrt{7}}{3})} 4 ⋅ ( 3 5 − 3 7 ) x − 3 5 + 3 7 = − 2 ⋅ ( − 3 11 − 3 2 7 ) y + 3 11 + 3 2 7 = 16 ⋅ ( − 3 4 − 3 7 ) z + 3 4 + 3 7
Comments