Question #104111
Find the equation of the normal to the solid 2x
2 −y
2 +8z
2 = 11 at a point where it
intersects the line x−3 = z =
y+1
2
.
1
Expert's answer
2020-03-02T15:25:32-0500

Solid: f(x,y,z)=2x2y2+8z211=0f(x,y,z)=2x^2 −y^2 +8z^2 - 11=0

Line: x3=z=y+12x−3 = z = \frac{y+1}{2}

Determine the point of intersection.


2x2y2+8z2=11z=x3z=y+12\begin{matrix} 2x^2 −y^2 +8z^2 & = &11 \\ z & = &x-3 \\ z &= &\frac{y+1}{2} \end{matrix}


2x2y2+8z2=11z=x3y=2z1\begin{matrix} 2x^2 −y^2 +8z^2 & = &11 \\ z & = &x-3 \\ y &= &2z-1 \end{matrix}


2x2y2+8z2=11z=x3y=2(x3)1\begin{matrix} 2x^2 −y^2 +8z^2 & = &11 \\ z & = &x-3 \\ y &= &2(x-3)-1 \end{matrix}

2x2y2+8z2=11z=x3y=2x7\begin{matrix} 2x^2 −y^2 +8z^2 & = &11 \\ z & = &x-3 \\ y &= &2x-7 \end{matrix}


Substitute z=x3 and y=2x7z=x-3 \text{ and } y=2x-7 into the first equation.


2x2(2x7)2+8(x3)2=112x^2 - (2x-7)^2 + 8(x-3)^2=11


Clear the parentheses and simplify.


3x210x+6=03x^2 - 10x + 6 =0


Using the formula for the discriminant, obtain the solution of this equation.


x1=53+73,x2=5373x_1= \frac{5}{3} + \frac{\sqrt{7}}{3}, \quad x_2= \frac{5}{3} - \frac{\sqrt{7}}{3}


Determine the y and z.y \text{ and }z.

z1=53+733=43+73,z2=4373y1=2(43+73)1=113+273,y2=113273z_{1} = \frac{5}{3} +\frac{\sqrt{7}}{3} - 3 = -\frac{4}{3} + \frac{\sqrt{7}}{3}, \quad z_{2} = -\frac{4}{3} - \frac{\sqrt{7}}{3} \\ y_{1} = 2( -\frac{4}{3} + \frac{\sqrt{7}}{3}) - 1 = -\frac{11}{3} + \frac{2\sqrt{7}}{3}, \quad y_{2} = -\frac{11}{3} -\frac{2\sqrt{7}}{3}


Thus, obtain two points of intersection P1=(53+73,113+273,43+73) and P2=(5373,113273,4373).P_{1} = \left( \frac{5}{3} + \frac{\sqrt{7}}{3}, -\frac{11}{3} + \frac{2\sqrt{7}}{3}, -\frac{4}{3} + \frac{\sqrt{7}}{3}\right) \text{ and } P_{2} = \left( \frac{5}{3} - \frac{\sqrt{7}}{3}, -\frac{11}{3} - \frac{2\sqrt{7}}{3}, -\frac{4}{3} - \frac{\sqrt{7}}{3}\right).


The equation of normal to solid at the point P1P_{1} is


xx1fx(x1,y1,z1)=yy1fy(x1,y1,z1)=zz1fz(x1,y1,z1)\frac{x-x_1}{f_{x}(x_1,y_1,z_1)} = \frac{y-y_1}{f_{y}(x_1,y_1,z_1)} = \frac{z-z_1}{f_{z}(x_1,y_1,z_1)}

where fx,fy,fzf_{x}, f_y, f_z are the partial derivatives of ff with respect to x,y,zx,y,z accordingly. Determine the partial derivatives.

fx=4xfy=2yfz=16zf_x = 4x \\ f_y = -2y\\ f_z = 16z


Therefore, the equation of the normal to the solid at the first point is



x53734(53+73)=y+1132732(113+273)=z+437316(43+73)\frac{x-\frac{5}{3}-\frac{\sqrt{7}}{3}}{4\cdot(\frac{5}{3}+\frac{\sqrt{7}}{3})}= \frac{y+\frac{11}{3}-\frac{2\sqrt{7}}{3}}{-2\cdot(-\frac{11}{3}+\frac{2\sqrt{7}}{3})} = \frac{z+\frac{4}{3}-\frac{\sqrt{7}}{3}}{16\cdot(-\frac{4}{3}+\frac{\sqrt{7}}{3})}

and the equation of the normal to the solid at the second point is



x53+734(5373)=y+113+2732(113273)=z+43+7316(4373)\frac{x-\frac{5}{3}+\frac{\sqrt{7}}{3}}{4\cdot(\frac{5}{3}-\frac{\sqrt{7}}{3})}= \frac{y+\frac{11}{3}+\frac{2\sqrt{7}}{3}}{-2\cdot(-\frac{11}{3}-\frac{2\sqrt{7}}{3})} = \frac{z+\frac{4}{3}+\frac{\sqrt{7}}{3}}{16\cdot(-\frac{4}{3}-\frac{\sqrt{7}}{3})}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS