Solid: "f(x,y,z)=2x^2 \u2212y^2 +8z^2 - 11=0"
Line: "x\u22123 = z = \\frac{y+1}{2}"
Determine the point of intersection.
"\\begin{matrix}\n 2x^2 \u2212y^2 +8z^2 & = &11 \\\\\n z & = &x-3 \\\\\n z &= &\\frac{y+1}{2}\n\\end{matrix}"
"\\begin{matrix}\n 2x^2 \u2212y^2 +8z^2 & = &11 \\\\\n z & = &x-3 \\\\\n y &= &2z-1\n\\end{matrix}"
"\\begin{matrix}\n 2x^2 \u2212y^2 +8z^2 & = &11 \\\\\n z & = &x-3 \\\\\n y &= &2(x-3)-1\n\\end{matrix}"
"\\begin{matrix}\n 2x^2 \u2212y^2 +8z^2 & = &11 \\\\\n z & = &x-3 \\\\\n y &= &2x-7\n\\end{matrix}"
Substitute "z=x-3 \\text{ and } y=2x-7" into the first equation.
"2x^2 - (2x-7)^2 + 8(x-3)^2=11"
Clear the parentheses and simplify.
"3x^2 - 10x + 6 =0"
Using the formula for the discriminant, obtain the solution of this equation.
"x_1= \\frac{5}{3} + \\frac{\\sqrt{7}}{3}, \\quad x_2= \\frac{5}{3} - \\frac{\\sqrt{7}}{3}"
Determine the "y \\text{ and }z."
"z_{1} = \\frac{5}{3} +\\frac{\\sqrt{7}}{3} - 3 = -\\frac{4}{3} + \\frac{\\sqrt{7}}{3}, \\quad z_{2} = -\\frac{4}{3} - \\frac{\\sqrt{7}}{3} \\\\\n\ny_{1} = 2( -\\frac{4}{3} + \\frac{\\sqrt{7}}{3}) - 1 = -\\frac{11}{3} + \\frac{2\\sqrt{7}}{3}, \\quad y_{2} = -\\frac{11}{3} -\\frac{2\\sqrt{7}}{3}"
Thus, obtain two points of intersection "P_{1} = \\left( \\frac{5}{3} + \\frac{\\sqrt{7}}{3}, -\\frac{11}{3} + \\frac{2\\sqrt{7}}{3}, -\\frac{4}{3} + \\frac{\\sqrt{7}}{3}\\right) \\text{ and } P_{2} = \\left( \\frac{5}{3} - \\frac{\\sqrt{7}}{3}, -\\frac{11}{3} - \\frac{2\\sqrt{7}}{3}, -\\frac{4}{3} - \\frac{\\sqrt{7}}{3}\\right)."
The equation of normal to solid at the point "P_{1}" is
where "f_{x}, f_y, f_z" are the partial derivatives of "f" with respect to "x,y,z" accordingly. Determine the partial derivatives.
"f_x = 4x \\\\\nf_y = -2y\\\\\nf_z = 16z"
Therefore, the equation of the normal to the solid at the first point is
and the equation of the normal to the solid at the second point is
Comments
Leave a comment