Let point A∈Ox then A(xa;0;0) ,
B∈Oy⟹B(0;xb;0),C∈Oz⟹C(0;0;zc),O(0;0;0) .
Equation plane
xax+yby+zcz=1
Point (a,b,c) in plane
xaa+ybb+zcc=1
Center of the sphere D(l;m;n)
AD=BD=CD=OD=R
AD2=(l−xa)2+(m−0)2+(n−0)2BD2=(l−0)2+(m−yb)2+(n−0)2CD2=(l−0)2+(m−0)2+(n−zc)2OD2=(l−0)2+(m−0)2+(n−0)2
AD2=OD2(l−xa)2+m2+n2=l2+m2+n2(l−xa)2=l2∣l−xa∣=∣l∣1)l−xa=ll∈∅,xa=02)l−xa=−ll=21xa
similarly
BD2=OD2l2+(m−yb)2+n2=l2+m2+n2(m−yb)2=m2m=21ybCD2=OD2l2+m2+(n−zc)2=l2+m2+n2(n−zc)2=n2n=21zc
Then
D(21xa;21yb;21zc)=(l;m;n)xa=2lyb=2mzc=2n
substitute into the equation
xaa+ybb+zcc=12la+2mb+2nc=1la+mb+nc=2
where (l,m,n) the coordinates centre of the sphere
Comments
Dear Deepak Rana, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
The solution is very good thanks for your help
Dear visitor, please use the panel for submitting new questions.
The normals at any point P of the ellipsoid x 2 9 + y 2 4 +z 2 = 1 meet the coordinate planes in Q1,Q2,Q3, respectively. Show that PQ1 : PQ2 : PQ3 :: 9 : 4 : 1.