Let point "A\\in Ox" then "A(x_a;0;0)" ,
"B\\in Oy\\implies B(0;x_b;0), \\\\\nC\\in Oz\\implies C(0;0;z_c),O(0;0;0)" .
Equation plane
"\\frac{x}{x_a}+\\frac{y}{y_b}+\\frac{z}{z_c}=1"
Point "(a,b,c)" in plane
"\\frac{a}{x_a}+\\frac{b}{y_b}+\\frac{c}{z_c}=1"
Center of the sphere "D(l;m;n)"
"AD=BD=CD=OD=R"
"AD^2=(l-x_a)^2+(m-0)^2+(n-0)^2\\\\\nBD^2=(l-0)^2+(m-y_b)^2+(n-0)^2\\\\\nCD^2=(l-0)^2+(m-0)^2+(n-z_c)^2\\\\\nOD^2=(l-0)^2+(m-0)^2+(n-0)^2"
"AD^2=OD^2\\\\\n(l-x_a)^2+m^2+n^2=l^2+m^2+n^2\\\\\n(l-x_a)^2=l^2\\\\\n|l-x_a|=|l|\\\\\n1) l-x_a=l\\\\\nl\\in\\empty, x_a=0\\\\\n2)l-x_a=-l\\\\\nl=\\frac{1}{2}x_a"
similarly
"BD^2=OD^2\\\\\nl^2+(m-y_b)^2+n^2=l^2+m^2+n^2\\\\\n(m-y_b)^2=m^2\\\\\nm=\\frac{1}{2}y_b\\\\\nCD^2=OD^2\\\\\nl^2+m^2+(n-z_c)^2=l^2+m^2+n^2\\\\\n(n-z_c)^2=n^2\\\\\nn=\\frac{1}{2}z_c"
Then
"D(\\frac{1}{2}x_a;\\frac{1}{2}y_b;\\frac{1}{2}z_c)=(l;m;n)\\\\\n\nx_a=2l\\\\\ny_b=2m\\\\\nz_c=2n"
substitute into the equation
"\\frac{a}{x_a}+\\frac{b}{y_b}+\\frac{c}{z_c}=1\\\\\n\\frac{a}{2l}+\\frac{b}{2m}+\\frac{c}{2n}=1\\\\\n\\frac{a}{l}+\\frac{b}{m}+\\frac{c}{n}=2\\\\"
where "(l,m,n)" the coordinates centre of the sphere
Comments
Dear Deepak Rana, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
The solution is very good thanks for your help
Dear visitor, please use the panel for submitting new questions.
The normals at any point P of the ellipsoid x 2 9 + y 2 4 +z 2 = 1 meet the coordinate planes in Q1,Q2,Q3, respectively. Show that PQ1 : PQ2 : PQ3 :: 9 : 4 : 1.
Leave a comment