let's name the points
A(1,−1,−2); B(1,−4,2); C(3,0,2); D(4,−3−2)
then compute vectors BA, CA, DA:
BA={0,3,-4};CA={-2,-1,-4};DA={-3,2,0}
and compute the triple product of these vectors:
"\\begin{vmatrix}\n\n 0 & 3 & -4 \\\\\n\n -2 & -1 & -4 \\\\\n\n -3 & 2 & 0\n\n\\end{vmatrix}" =0*(-1*0-(-4*2))-3*(-2*0-(-4*(-3)))-4*(-2*2-(-3)*(-1))=64
then, if the triple product is not equal to zero, then the vectors are not coplanar, then the points are not coplanar
we will change coordinates B to (6,-2,2) , then check if they coplanar again
BA={-5,1,-4};CA={-2,-1,-4};DA={-3,2,0}
"\\begin{vmatrix}\n\n -5 & 1 & -4 \\\\\n\n -2 & -1 & -4 \\\\\n\n -3 & 2 & 0\n\n\\end{vmatrix}" =0, so they are coplanar now,
The plane, coplanar to 2 vectors (CA, DA) and passing through point A will be
"\\begin{vmatrix}\n\n x-1 & y+1 & z+2 \\\\\n\n -2 & -1 & -4 \\\\\n\n -3 & 2 & 0\n\n\\end{vmatrix}" =0 OR 8x+12y-7z-10=0
Comments
Leave a comment