"\\frac{x^2}{3}-\\frac{y^2}{4}=z\\\\x+2y-z=6"
We will find "z"
"z=x+2y-6"
"\\frac{x^2}{3}-\\frac{y^2}{4}=x+2y-6\\\\"
multiplying by 12
"4x^2-3y^2-12x-24y=-72\\\\\n4(x^2-3x)-3(y^2+8y)=-72\\\\\n4(x-\\frac{3}{2})^2-3(y+4)^2=-72+4\\cdot\\frac{9}{4}-3\\cdot16\\\\\n4(x-\\frac{3}{2})-3(y+4)^2=-111\\\\"
multiplying by "111"
"\\frac{4(x-\\frac{3}{2})}{111}-\\frac{3(y+4)^2}{111}=-1\\\\\n\\frac{(x-\\frac{3}{2})}{\\frac{111}{4}}-\\frac{(y+4)^2}{{\\frac{111}{3}}}=-1\\\\"
hyperbola, conjugated hyperbola "\\frac{(x-\\frac{3}{2})}{\\frac{111}{4}}-\\frac{(y+4)^2}{{\\frac{111}{3}}}=1\\\\" ,
center "(\\frac{3}{2};-4)" ,
semi-axes "a=\\sqrt{\\frac{111}{4}}, b=\\sqrt{\\frac{111}{3}}" .
Comments
Leave a comment