Question #103315
Find the nature of the planar section of the conicoid x²/3-y²/4=z by the plane
x+2y−z = 6
1
Expert's answer
2020-02-19T10:53:35-0500

x23y24=zx+2yz=6\frac{x^2}{3}-\frac{y^2}{4}=z\\x+2y-z=6

We will find zz

z=x+2y6z=x+2y-6

x23y24=x+2y6\frac{x^2}{3}-\frac{y^2}{4}=x+2y-6\\

multiplying by 12

4x23y212x24y=724(x23x)3(y2+8y)=724(x32)23(y+4)2=72+4943164(x32)3(y+4)2=1114x^2-3y^2-12x-24y=-72\\ 4(x^2-3x)-3(y^2+8y)=-72\\ 4(x-\frac{3}{2})^2-3(y+4)^2=-72+4\cdot\frac{9}{4}-3\cdot16\\ 4(x-\frac{3}{2})-3(y+4)^2=-111\\

multiplying by 111111

4(x32)1113(y+4)2111=1(x32)1114(y+4)21113=1\frac{4(x-\frac{3}{2})}{111}-\frac{3(y+4)^2}{111}=-1\\ \frac{(x-\frac{3}{2})}{\frac{111}{4}}-\frac{(y+4)^2}{{\frac{111}{3}}}=-1\\

hyperbola, conjugated hyperbola (x32)1114(y+4)21113=1\frac{(x-\frac{3}{2})}{\frac{111}{4}}-\frac{(y+4)^2}{{\frac{111}{3}}}=1\\ ,

 center (32;4)(\frac{3}{2};-4) ,

semi-axes a=1114,b=1113a=\sqrt{\frac{111}{4}}, b=\sqrt{\frac{111}{3}} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS