Answer: "6y^2+24zy-4yx-32y+16z^2+26-40z-4x"
The vertex is "A(1, -1, 2)" . Let "a, b, c" be the direction ratios of a generator of the cone. Then the equations of generator are,
"\\frac{x-1}{a}=\\frac{y+1}{b}=\\frac{z-2}{c}=t" (say)
The coordinates of any point on the generator are ("1+at" , "-1+bt" , "2+ct"). For some "t \\in \\mathbb{R}" , ("1+at" , "-1+bt" , "2+ct" ) lies on the guiding curve.
Therefore "((2+ct)+1)^2 = (1+at)+2" and "-1+bt = 3" . Thus, "t = \\frac{4}{b}" . From this we get,
"((2+c\\cdot\\frac{4}{b})+1)^2 = (1+a\\cdot\\frac{4}{b})+2"
"(3+4\\cdot\\frac{z-2}{y+1})^2 = 3+4\\cdot\\frac{x-1}{y+1}"
After simplification, the required equation of the cone is,
"6y^2+24zy-4yx-32y+16z^2+26-40z-4x".
Comments
Leave a comment