al+bm+cn=0, fmn+gnl+hlm=0,
n=-(al+bm)/c,
fm*[-(al+bm)/c]+gl*[-(al+bm)/c]+hlm=0
fmal+fm2b+gal2+gbml-hlmc=0
gal2+lm(af+bg-ch)+bfm2=0
ga(l/m)2+(l/m)(af+bg-ch)+bf=0
l1/m1 & l2/m2 - solving the equation
l1,m1,n1 &l2,m2,n2 of straight line
L1=/=L2, because L1_|_L2
By Viet's theorem
l1/m1 * l2/m2=bf/ga,
l1*l2/(f/a)=m1*m2/(g/b).
Similarly, expressing the variables m and l,
l1*l2/(f/a)=m1*m2/(g/b)=n1*n2/(h/c)=const=k
A widely known sign of perpendicular straight lines is
the sum of the corresponding products of the directing cosines is zero.
l1*l2+l1*l2+n1*n2=0
k*f/a + k*g/b +k*h/c=0
k(f/a+g/b+h/c)=0
"k \\ne 0" because "l, m, n \\ne 0" (cos x=0 if x=0 ) & "abc \\ne 0"
f/a+g/b+h/c=0
Comments
Leave a comment