We need to find the maximum number of intersections of a circle and a hyperbola.
The Equation of a circle is
x 2 + y 2 = r 2 . . . … … . . . . . . … . . ( 1 ) x^2 + y^2 = r^2 ...……......…..(1) x 2 + y 2 = r 2 ... …… ...... … .. ( 1 )
The equation of a hyperbola is
x 2 a 2 − y 2 b 2 = 1 … … … . . . … … … . ( 2 ) \frac {x^2}{a^2} - \frac {y^2}{b^2} =1 ………...……….(2) a 2 x 2 − b 2 y 2 = 1 ……… ... ……… . ( 2 )
The intersection points can be obtained as the solution of both the above equations.
From equation (1),
y 2 = r 2 − x 2 y^2 = r^2 - x^2 y 2 = r 2 − x 2 Plug this in equation (2),
x 2 a 2 − r 2 − x 2 b 2 = 1 \frac {x^2}{a^2} - \frac {r^2 - x^2}{b^2} =1 a 2 x 2 − b 2 r 2 − x 2 = 1
b 2 x 2 − a 2 r 2 + a 2 x 2 = a 2 b 2 b^2 x^2 - a^2 r^2 + a^2 x^2 = a^2 b^2 b 2 x 2 − a 2 r 2 + a 2 x 2 = a 2 b 2
x 2 ( a 2 + b 2 ) = a 2 b 2 + a 2 r 2 x^2 ( a^2 + b^2 ) = a^2 b^2 + a^2 r^2 x 2 ( a 2 + b 2 ) = a 2 b 2 + a 2 r 2
x 2 = a 2 ( b 2 + r 2 ) a 2 + b 2 x^2 = \frac {a^2 (b^2 + r^2)}{a^2 + b^2} x 2 = a 2 + b 2 a 2 ( b 2 + r 2 )
x = ± a 2 ( b 2 + r 2 ) a 2 + b 2 x = ± \sqrt {\frac {a^2 (b^2 +r^2)} {a^2 + b^2}} x = ± a 2 + b 2 a 2 ( b 2 + r 2 )
Plug the x 2 = a 2 ( b 2 + r 2 ) a 2 + b 2 x^2 = \frac {a^2 (b^2 + r^2)}{a^2 + b^2} x 2 = a 2 + b 2 a 2 ( b 2 + r 2 ) in y 2 = r 2 − x 2 y^2 = r^2 - x^2 y 2 = r 2 − x 2
y 2 = r 2 − a 2 ( b 2 + r 2 ) a 2 + b 2 y^2 = r^2 - \frac {a^2 (b^2 + r^2) }{a^2 + b^2 } y 2 = r 2 − a 2 + b 2 a 2 ( b 2 + r 2 )
y 2 = a 2 r 2 + b 2 r 2 − a 2 b 2 − a 2 r 2 a 2 + b 2 y^2 = \frac {a^2 r^2 + b^2 r^2 - a^2 b^2 - a^2 r^2}{a^2 + b^2} y 2 = a 2 + b 2 a 2 r 2 + b 2 r 2 − a 2 b 2 − a 2 r 2
y 2 = b 2 ( r 2 − a 2 ) a 2 + b 2 y^2 = \frac {b^2 (r^2 - a^2)}{a^2 + b^2} y 2 = a 2 + b 2 b 2 ( r 2 − a 2 )
y = ± b 2 ( r 2 − a 2 ) a 2 + b 2 y = ± \sqrt {\frac {b^2 (r^2 - a^2 )} {a^2 + b^2}} y = ± a 2 + b 2 b 2 ( r 2 − a 2 )
So, the intersecting points are pairs (x,y) taking the sign into account just like (+, + ), (+, -), (-, + ), ( -, -).
The maximum number of intersections is 4.
Answer: the maximum number of intersecting points is 4.
Comments