(xO−xC)2+(yO−yC)2=(xO′−xC)2+(yO′−yC)2xC2+yC2=1−2xC+xC2+1+2yC+yC2yC=xC−1
(xP−xC)2+(yP−yC)2=(xP′−xC)2+(yP′−yC)2(2−xC)2+yC2=(1−xC)2+(−3−yC)24−4xC+xC2+yC2=1−2xC+xC2+9+6yC+yC2−2xC=6+6yC
yC=xC−1xC=−3−3yC
xC=0,yC=−1Arbitrary Rotation Center
To rotate about an arbitrary point C(0,−1) by θ:
Translate the object so that C will coincide with the origin:
O1(0,1),P1(2,1),Q1(4,3),R1(0,4)Rotate the object:
O2(0⋅cosθ−1⋅sinθ,0⋅sinθ+1⋅cosθ),P2(2⋅cosθ−1⋅sinθ,2⋅sinθ+1⋅cosθ),Q2(4⋅cosθ−3⋅sinθ,4⋅sinθ+3⋅cosθ),R2(0⋅cosθ−4⋅sinθ,0⋅sinθ+4⋅cosθ), Translate the object back:
O′(−sinθ,cosθ−1),P′(2cosθ−sinθ,2sinθ+cosθ−1),Q′(4cosθ−3sinθ,4sinθ+3cosθ−1),R′(−4sinθ,4cosθ−1),
−sinθ=1cosθ−1=−1
2cosθ−sinθ=12sinθ+cosθ−1=−3
4⋅cosθ−3⋅sinθ=34sinθ+3cosθ−1=−5
−4sinθ=44cosθ−1=−1
θ=270°xC=0yC=−1
(c)From the quadrilaterals drawn, state the pairs that are:
(i) Directly congruent
When figures are congruent and have the same orientation. For example, the image and pre image in a rotation and translation.
OPQR and O′P′Q′R′
(ii) Oppositely congruent
When figures are congruent but have opposite orientations. For example, the image and pre image in a reflection and glide reflection.
OPQR and O′′P′′Q′′R′′
O′P′Q′R′ and O′′P′′Q′′R′′
Comments
Dear Gloria, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thanks a lot. I appreciate it.