Question #99351
The vertices of quadrilateral OPQR are O(0,0), P(2,0), Q(4,2), R(0,3). The vertices of its image under a rotation are O'(1,-1), P'(1,-3), Q'(3,-5) and R'(4,-1).
(a)(i) On the grid draw OPQR and its image O'P'Q'R'.
(ii) by construction determine the centre and angle of rotation.
(b) On the same grid as (a) (i) above, draw O''P''Q''R'', the image of O'P'Q'R' under a reflection in the line y = x
(c)From the quadrilaterals drawn, state the pairs that are:
(i) Directly congruent; (
(ii) Oppositely congruent
1
Expert's answer
2019-11-25T14:26:29-0500
(xOxC)2+(yOyC)2=(xOxC)2+(yOyC)2(x_O-x_C)^2+(y_O-y_C)^2=(x_{O'}-x_C)^2+(y_{O'}-y_C)^2xC2+yC2=12xC+xC2+1+2yC+yC2x_C^2+y_C^2=1-2x_C+x_C^2+1+2y_C+y_C^2yC=xC1y_C=x_C-1


(xPxC)2+(yPyC)2=(xPxC)2+(yPyC)2(x_P-x_C)^2+(y_P-y_C)^2=(x_{P'}-x_C)^2+(y_{P'}-y_C)^2(2xC)2+yC2=(1xC)2+(3yC)2(2-x_C)^2+y_C^2=(1-x_C)^2+(-3-y_C)^244xC+xC2+yC2=12xC+xC2+9+6yC+yC24-4x_C+x_C^2+y_C^2=1-2x_C+x_C^2+9+6y_C+y_C^22xC=6+6yC-2x_C=6+6y_C

yC=xC1y_C=x_C-1xC=33yCx_C=-3-3y_C

xC=0,yC=1x_C=0, y_C=-1

Arbitrary Rotation Center

To rotate about an arbitrary point C(0,1)C(0,-1) by θ:\theta:

Translate the object so that CC will coincide with the origin:

O1(0,1),P1(2,1),Q1(4,3),R1(0,4)O_1(0, 1), P_1(2,1), Q_1(4, 3),R_1(0,4)

Rotate the object:


O2(0cosθ1sinθ,0sinθ+1cosθ),O_2(0\cdot\cos\theta-1\cdot\sin\theta,0\cdot\sin\theta+1\cdot\cos\theta),P2(2cosθ1sinθ,2sinθ+1cosθ),P_2(2\cdot\cos\theta-1\cdot\sin\theta,2\cdot\sin\theta+1\cdot\cos\theta),Q2(4cosθ3sinθ,4sinθ+3cosθ),Q_2(4\cdot\cos\theta-3\cdot\sin\theta,4\cdot\sin\theta+3\cdot\cos\theta),R2(0cosθ4sinθ,0sinθ+4cosθ),R_2(0\cdot\cos\theta-4\cdot\sin\theta,0\cdot\sin\theta+4\cdot\cos\theta),

Translate the object back:


O(sinθ,cosθ1),O'(-\sin\theta,\cos\theta-1),P(2cosθsinθ,2sinθ+cosθ1),P'(2\cos\theta-\sin\theta,2\sin\theta+\cos\theta-1),Q(4cosθ3sinθ,4sinθ+3cosθ1),Q'(4\cos\theta-3\sin\theta,4\sin\theta+3\cos\theta-1),R(4sinθ,4cosθ1),R'(-4\sin\theta,4\cos\theta-1),

sinθ=1-\sin\theta=1cosθ1=1\cos\theta-1=-1

2cosθsinθ=12\cos\theta-\sin\theta=12sinθ+cosθ1=32\sin\theta+\cos\theta-1=-3

4cosθ3sinθ=34\cdot\cos\theta-3\cdot\sin\theta=34sinθ+3cosθ1=54\sin\theta+3\cos\theta-1=-5

4sinθ=4-4\sin\theta=44cosθ1=14\cos\theta-1=-1


θ=270°\theta=270\degreexC=0x_C=0yC=1y_C=-1

(c)From the quadrilaterals drawn, state the pairs that are:

(i) Directly congruent

When figures are congruent and have the same orientation. For example, the image and pre image in a rotation and translation.


OPQR and OPQROPQR \ and\ O'P'Q'R'

(ii) Oppositely congruent

When figures are congruent but have opposite orientations. For example, the image and pre image in a reflection and glide reflection.


OPQR and OPQROPQR \ and\ O''P''Q''R''

OPQR and OPQRO'P'Q'R' \ and\ O''P''Q''R''

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
26.11.19, 16:04

Dear Gloria, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Gloria
25.11.19, 22:06

Thanks a lot. I appreciate it.

LATEST TUTORIALS
APPROVED BY CLIENTS