Question #97803
Find the distances between the following pairs of parallel lines
(a) r · (i + j) + 7 = 0, r · (i + j) − 11 = 0;
(b) r · (2i − 3j) + 6 = 0, r · (4i − 6j) + 5 = 0;
(c) r = i + j + s(4i − j), r = 4i + 5j + t(8i − 2j).
1
Expert's answer
2019-11-01T13:18:53-0400

(a)

converting equation into general form

then given lines are-


x+y+7=0andx+y11=0distance=d1d2a2+b2=7+1112+12=182=92=12.728x+y+7=0\\and\\x+y-11=0\\distance=\frac{|d_1-d_2|}{\sqrt{a^2+b^2}}=\frac{|7+11|}{\sqrt{1^2+1^2}}=\frac{18}{\sqrt{2}}=9\sqrt{2}=12.728

(b)

Similarly given lines are -


4x6y+12=0and4x6y+5=0distance=d1d2a2+b2=12542+(6)2=752=0.974x-6y+12=0\\and\\4x-6y+5=0\\distance=\frac{|d_1-d_2|}{\sqrt{a^2+b^2}}=\frac{|12-5|}{\sqrt{4^2+(-6)^2}}=\frac{7}{\sqrt{52}}=0.97

(c)

passing points are (1,1) and (4,5)(1,1)\ and\ (4,5)

distance betwwen passing point of these two lines is-


d=(x1x2)2+(y1y2)2=(41)2+(51)2d=5d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(4-1)^2+(5-1)^2}\\d=5

vector between these two points= A = 3i^+4j^3\hat i+4\hat j

vector parallel to any of the two line =B = 4i^j^4\hat i-\hat j

Distance between two lines = dsinθd\sin\theta

where θ\theta is the angle between vector A and B

now,cosθ=A.BAB=1245×17=8517then,sinθ=0.922now,\\\cos\theta=\frac{\overset{\to}A.\overset{\to}B}{|\overset{\to}A||\overset{\to}B|}=\frac{12-4}{5\times\sqrt{17}}=\frac{8}{5\sqrt{17}}\\then,\sin\theta=0.922

So,

distance between two lines = dsinθ=5×0.922=4.61d\sin\theta=5\times0.922=4.61


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS