(a)
converting equation into general form
then given lines are-
x + y + 7 = 0 a n d x + y − 11 = 0 d i s t a n c e = ∣ d 1 − d 2 ∣ a 2 + b 2 = ∣ 7 + 11 ∣ 1 2 + 1 2 = 18 2 = 9 2 = 12.728 x+y+7=0\\and\\x+y-11=0\\distance=\frac{|d_1-d_2|}{\sqrt{a^2+b^2}}=\frac{|7+11|}{\sqrt{1^2+1^2}}=\frac{18}{\sqrt{2}}=9\sqrt{2}=12.728 x + y + 7 = 0 an d x + y − 11 = 0 d i s t an ce = a 2 + b 2 ∣ d 1 − d 2 ∣ = 1 2 + 1 2 ∣7 + 11∣ = 2 18 = 9 2 = 12.728 (b)
Similarly given lines are -
4 x − 6 y + 12 = 0 a n d 4 x − 6 y + 5 = 0 d i s t a n c e = ∣ d 1 − d 2 ∣ a 2 + b 2 = ∣ 12 − 5 ∣ 4 2 + ( − 6 ) 2 = 7 52 = 0.97 4x-6y+12=0\\and\\4x-6y+5=0\\distance=\frac{|d_1-d_2|}{\sqrt{a^2+b^2}}=\frac{|12-5|}{\sqrt{4^2+(-6)^2}}=\frac{7}{\sqrt{52}}=0.97 4 x − 6 y + 12 = 0 an d 4 x − 6 y + 5 = 0 d i s t an ce = a 2 + b 2 ∣ d 1 − d 2 ∣ = 4 2 + ( − 6 ) 2 ∣12 − 5∣ = 52 7 = 0.97
(c)
passing points are ( 1 , 1 ) a n d ( 4 , 5 ) (1,1)\ and\ (4,5) ( 1 , 1 ) an d ( 4 , 5 )
distance betwwen passing point of these two lines is-
d = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 = ( 4 − 1 ) 2 + ( 5 − 1 ) 2 d = 5 d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=\sqrt{(4-1)^2+(5-1)^2}\\d=5 d = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 = ( 4 − 1 ) 2 + ( 5 − 1 ) 2 d = 5 vector between these two points= A = 3 i ^ + 4 j ^ 3\hat i+4\hat j 3 i ^ + 4 j ^
vector parallel to any of the two line =B = 4 i ^ − j ^ 4\hat i-\hat j 4 i ^ − j ^
Distance between two lines = d sin θ d\sin\theta d sin θ
where θ \theta θ is the angle between vector A and B
n o w , cos θ = A → . B → ∣ A → ∣ ∣ B → ∣ = 12 − 4 5 × 17 = 8 5 17 t h e n , sin θ = 0.922 now,\\\cos\theta=\frac{\overset{\to}A.\overset{\to}B}{|\overset{\to}A||\overset{\to}B|}=\frac{12-4}{5\times\sqrt{17}}=\frac{8}{5\sqrt{17}}\\then,\sin\theta=0.922 n o w , cos θ = ∣ A → ∣∣ B → ∣ A → . B → = 5 × 17 12 − 4 = 5 17 8 t h e n , sin θ = 0.922
So,
distance between two lines = d sin θ = 5 × 0.922 = 4.61 d\sin\theta=5\times0.922=4.61 d sin θ = 5 × 0.922 = 4.61
Comments