We have system of equations (conicoid and plane):"\\begin{cases}\n\\frac{x^2}{3}-\\frac{y^2}{4}=z \\\\\nx+2y-z=6\n\\end{cases}\n\\quad \n\\begin{cases}\n\\frac{x^2}{3}-\\frac{y^2}{4}=z\\\\\nz=x+2y-6\n\\end{cases}\n\\quad \n\\begin{cases}\n\\frac{x^2}{3}-\\frac{y^2}{4}=x+2y-6\\\\\nz=x+2y-6\n\\end{cases}"
"\\frac{x^2}{3}-\\frac{y^2}{4}=x+2y-6, \\quad (\\frac{x^2}{3}-x+\\frac{3}{4})-\\frac{3}{4}-(\\frac{y^2}{4}+2y+4)+4=-6"
"(\\frac{x}{\\sqrt{3}}-\\frac{\\sqrt{3}}{2})^2-(\\frac{y}{2}+2)^2=-9.25" - equation of the hyperbolic cylinder.
"\\begin{cases}\n\n (\\frac{x}{\\sqrt{3}}-\\frac{\\sqrt{3}}{2})^2-(\\frac{y}{2}+2)^2=-9.25\n\\\\\nz=x+2y-6\n\\end{cases}"
Intersection of hyperbolic cylinder and plane can be:
• a line, 2 parallel lines, no points (if plane is perpendicular to "z=0" )
• hyperbola (if if plane isn’t perpendicular to "z=0" )
In our case, "x+2y-z=6" isn’t perpendicular to "z=0".
Therefore, it will be hyperbola.
Answer: hyperbola.
Comments
Leave a comment