Solution:
"2x^2 \u2212y^2 +8z^2 = 11"
"x\u22123 = z =(y+1)\u00f72"
they intersect at points:
"(\\frac{5-\\sqrt{7}}{3}, \\frac{-11-2\\sqrt{7}}{3}, \\frac{-4-\\sqrt{7}}{3})"
and
"(\\frac{5+\\sqrt{7}}{3}, \\frac{-11+2\\sqrt{7}}{3}, \\frac{-4+\\sqrt{7}}{3})"
Normals:
"\\frac{x-\\frac{5-\\sqrt{7}}{3}}{4\\cdot\\frac{5-\\sqrt{7}}{3}}=\\frac{y-\\frac{-11-2\\sqrt{7}}{3}}{-2\\cdot\\frac{-11-2\\sqrt{7}}{3}}=\\frac{z-\\frac{-4-\\sqrt{7}}{3}}{16\\cdot\\frac{-4-\\sqrt{7}}{3}}"
"\\frac{x-\\frac{5+\\sqrt{7}}{3}}{4\\cdot\\frac{5+\\sqrt{7}}{3}}=\\frac{y-\\frac{-11+2\\sqrt{7}}{3}}{-2\\cdot\\frac{-11+2\\sqrt{7}}{3}}=\\frac{z-\\frac{-4+\\sqrt{7}}{3}}{16\\cdot\\frac{-4+\\sqrt{7}}{3}}"
Comments
Leave a comment