Question #102913
Find the equation of the normal to the solid 2x^2 −y^2 +8z^2 = 11 at a point where it
intersects the line x−3 = z =(y+1)÷2.
1
Expert's answer
2020-02-18T05:59:30-0500

Solution:


2x2y2+8z2=112x^2 −y^2 +8z^2 = 11

x3=z=(y+1)÷2x−3 = z =(y+1)÷2


they intersect at points:

(573,11273,473)(\frac{5-\sqrt{7}}{3}, \frac{-11-2\sqrt{7}}{3}, \frac{-4-\sqrt{7}}{3})

and

(5+73,11+273,4+73)(\frac{5+\sqrt{7}}{3}, \frac{-11+2\sqrt{7}}{3}, \frac{-4+\sqrt{7}}{3})


Normals:


x5734573=y11273211273=z47316473\frac{x-\frac{5-\sqrt{7}}{3}}{4\cdot\frac{5-\sqrt{7}}{3}}=\frac{y-\frac{-11-2\sqrt{7}}{3}}{-2\cdot\frac{-11-2\sqrt{7}}{3}}=\frac{z-\frac{-4-\sqrt{7}}{3}}{16\cdot\frac{-4-\sqrt{7}}{3}}


x5+7345+73=y11+273211+273=z4+73164+73\frac{x-\frac{5+\sqrt{7}}{3}}{4\cdot\frac{5+\sqrt{7}}{3}}=\frac{y-\frac{-11+2\sqrt{7}}{3}}{-2\cdot\frac{-11+2\sqrt{7}}{3}}=\frac{z-\frac{-4+\sqrt{7}}{3}}{16\cdot\frac{-4+\sqrt{7}}{3}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS