Solution:
2x2−y2+8z2=11
x−3=z=(y+1)÷2
they intersect at points:
(35−7,3−11−27,3−4−7)
and
(35+7,3−11+27,3−4+7)
Normals:
4⋅35−7x−35−7=−2⋅3−11−27y−3−11−27=16⋅3−4−7z−3−4−7
4⋅35+7x−35+7=−2⋅3−11+27y−3−11+27=16⋅3−4+7z−3−4+7
Comments