Question #103639
Find the orthogonal canonical reduction of the quadratic form
1
Expert's answer
2020-02-24T12:25:16-0500

Find the orthogonal canonical reduction of the quadratic form x2+y2+z26xy6xz+2yz-x^2+y^2+z^2-6xy-6xz+2yz

The matrix of the quadratic form


A=(133311311)A=\begin{pmatrix} -1 & -3 & -3 \\ -3 & 1 & 1\\ -3 & 1 & 1 \end{pmatrix}

Find the eigenvalues


AλI=(1λ3331λ1311λ)A-\lambda I=\begin{pmatrix} -1-\lambda & -3 & -3 \\ -3 & 1-\lambda & 1\\ -3 & 1 & 1-\lambda \end{pmatrix}

The characteristic equation is det(AλI)=0det (A-\lambda I)=0

AλI=1λ3331λ1311λ=A-\lambda I=\begin{vmatrix} -1-\lambda & -3 & -3 \\ -3 & 1-\lambda & 1\\ -3 & 1 & 1-\lambda \end{vmatrix}==(1λ)1λ111λ(3)3131λ+=( -1-\lambda)\begin{vmatrix} 1-\lambda & 1\\ 1 & 1-\lambda \end{vmatrix}-(-3)\begin{vmatrix} -3 & 1\\ -3 & 1-\lambda \end{vmatrix}++(3)31λ31=(1λ)((1λ)21)++(-3)\begin{vmatrix} -3 & 1-\lambda \\ -3 & 1 \end{vmatrix}=(-1-\lambda)((1-\lambda)^2-1)++3(3(1λ)+3)3(3+3(1λ))=0+3(-3(1-\lambda)+3)-3(-3+3(1-\lambda))=0

2λλ2+2λ2λ3+9λ+9λ=02\lambda-\lambda^2+2\lambda^2-\lambda^3+9\lambda+9\lambda=0λ(λ2+λ+20)=0\lambda(-\lambda^2+\lambda+20)=0λ(λ+4)(λ5)=0-\lambda(\lambda+4)(\lambda-5)=0

λ1=4\lambda_1=-4

λ2=0\lambda_2=0

λ3=5\lambda_3=5

Find the eigenvectors

λ=4\lambda=-4


(1λ3331λ1311λ)=(333351315)\begin{pmatrix} -1-\lambda & -3 & -3 \\ -3 & 1-\lambda & 1\\ -3 & 1 & 1-\lambda \end{pmatrix}=\begin{pmatrix} 3 & -3 & -3 \\ -3 & 5 & 1\\ -3 & 1 & 5 \end{pmatrix}

Perform row operations to obtain the rref of the matrix:


(333351315)(102011000)\begin{pmatrix} 3 & -3 & -3 \\ -3 & 5 & 1\\ -3 & 1 & 5 \end{pmatrix}\sim\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}

Solve the matrix equation


(102011000)(v1v2v3)=(000)\begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}

If we take v3=t,v_3=t, then v1=2t,v2=t,v3=t.v_1=2t, v_2=t, v_3=t.

Therefore


v=(2ttt)=(211)t\textbf{v}=\begin{pmatrix} 2t \\ t \\ t \end{pmatrix}=\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} t

The principal axis is

16(211){1 \over \sqrt{6}}\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}

λ=0\lambda=0


(1λ3331λ1311λ)=(133311311)\begin{pmatrix} -1-\lambda & -3 & -3 \\ -3 & 1-\lambda & 1\\ -3 & 1 & 1-\lambda \end{pmatrix}=\begin{pmatrix} -1 & -3 & -3 \\ -3 & 1 & 1\\ -3 & 1 & 1 \end{pmatrix}

Perform row operations to obtain the rref of the matrix:


(133311311)=(100011000)\begin{pmatrix} -1 & -3 & -3 \\ -3 & 1 & 1\\ -3 & 1 & 1 \end{pmatrix}=\begin{pmatrix} 1 &0 & 0 \\ 0 & 1 & 1\\ 0 & 0 & 0 \end{pmatrix}

Solve the matrix equation


(100011000)(v1v2v3)=(000)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}

If we take v3=t,v_3=t, then v1=0,v2=t,v3=t.v_1=0, v_2=-t, v_3=t.

Therefore


v=(0tt)=(011)t\textbf{v}=\begin{pmatrix} 0 \\ -t \\ t \end{pmatrix}=\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} t

The principal axis is


12(011){1 \over \sqrt{2}}\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}

λ=5\lambda=5


(1λ3331λ1311λ)=(633341314)\begin{pmatrix} -1-\lambda & -3 & -3 \\ -3 & 1-\lambda & 1\\ -3 & 1 & 1-\lambda \end{pmatrix}=\begin{pmatrix} -6 & -3 & -3 \\ -3 & -4 & 1\\ -3 & 1 & -4 \end{pmatrix}

Perform row operations to obtain the rref of the matrix:


(633341314)(101011000)\begin{pmatrix} -6 & -3 & -3 \\ -3 & -4 & 1\\ -3 & 1 & -4 \end{pmatrix}\sim\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}

Solve the matrix equation


(101011000)(v1v2v3)=(000)\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix}\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}=\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}

If we take v3=t,v_3=t, then v1=t,v2=t,v3=t.v_1=-t, v_2=t, v_3=t.

Therefore


v=(ttt)=(111)t\textbf{v}=\begin{pmatrix} -t \\ t \\ t \end{pmatrix}=\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} t

The principal axis is


13(111){1 \over \sqrt{3}}\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}

P=(2/601/31/61/21/31/61/21/3)P=\begin{pmatrix} 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3}\\ 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \end{pmatrix}

P1=PT=(2/61/61/601/21/21/31/31/3)P^{-1}=P^T=\begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{6} & 1/\sqrt{6} \\ 0 & -1/\sqrt{2} & 1/\sqrt{2}\\ -1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}

D=(400000005)D=\begin{pmatrix} -4 & 0 & 0 \\ 0 & 0 &0\\ 0 & 0 & 5 \end{pmatrix}

(x1y1z1)=PT(xyz)\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}=P^T\begin{pmatrix} x \\ y \\ z \end{pmatrix}

x1=(2/6)x+(1/6)y+(1/6)zx_1= (2/\sqrt{6})x+( 1/\sqrt{6})y+( 1/\sqrt{6})zy1=(0)x+(1/2)y+(1/2)zy_1= (0)x+( -1/\sqrt{2})y+( 1/\sqrt{2})zz1=(1/3)x+(1/3)y+(1/3)zz_1= (-1/\sqrt{3})x+( 1/\sqrt{3})y+( 1/\sqrt{3})z

The orthogonal canonical reduction of the quadratic form is


4x12+5z12=0-4x_1^2+5z_1^2=0

The principal axes are


p1=16(211),p2=12(011),p3=13(111)p_1={1 \over \sqrt{6}}\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, p_2={1 \over \sqrt{2}}\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}, p_3={1 \over \sqrt{3}}\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS