Find the orthogonal canonical reduction of the quadratic form −x2+y2+z2−6xy−6xz+2yz
The matrix of the quadratic form
A=⎝⎛−1−3−3−311−311⎠⎞ Find the eigenvalues
A−λI=⎝⎛−1−λ−3−3−31−λ1−311−λ⎠⎞ The characteristic equation is det(A−λI)=0
A−λI=∣∣−1−λ−3−3−31−λ1−311−λ∣∣==(−1−λ)∣∣1−λ111−λ∣∣−(−3)∣∣−3−311−λ∣∣++(−3)∣∣−3−31−λ1∣∣=(−1−λ)((1−λ)2−1)++3(−3(1−λ)+3)−3(−3+3(1−λ))=0
2λ−λ2+2λ2−λ3+9λ+9λ=0λ(−λ2+λ+20)=0−λ(λ+4)(λ−5)=0λ1=−4
λ2=0
λ3=5
Find the eigenvectors
λ=−4
⎝⎛−1−λ−3−3−31−λ1−311−λ⎠⎞=⎝⎛3−3−3−351−315⎠⎞ Perform row operations to obtain the rref of the matrix:
⎝⎛3−3−3−351−315⎠⎞∼⎝⎛100010−2−10⎠⎞ Solve the matrix equation
⎝⎛100010−2−10⎠⎞⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞ If we take v3=t, then v1=2t,v2=t,v3=t.
Therefore
v=⎝⎛2ttt⎠⎞=⎝⎛211⎠⎞t The principal axis is
61⎝⎛211⎠⎞λ=0
⎝⎛−1−λ−3−3−31−λ1−311−λ⎠⎞=⎝⎛−1−3−3−311−311⎠⎞ Perform row operations to obtain the rref of the matrix:
⎝⎛−1−3−3−311−311⎠⎞=⎝⎛100010010⎠⎞ Solve the matrix equation
⎝⎛100010010⎠⎞⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞If we take v3=t, then v1=0,v2=−t,v3=t.
Therefore
v=⎝⎛0−tt⎠⎞=⎝⎛0−11⎠⎞t The principal axis is
21⎝⎛0−11⎠⎞
λ=5
⎝⎛−1−λ−3−3−31−λ1−311−λ⎠⎞=⎝⎛−6−3−3−3−41−31−4⎠⎞ Perform row operations to obtain the rref of the matrix:
⎝⎛−6−3−3−3−41−31−4⎠⎞∼⎝⎛1000101−10⎠⎞Solve the matrix equation
⎝⎛1000101−10⎠⎞⎝⎛v1v2v3⎠⎞=⎝⎛000⎠⎞If we take v3=t, then v1=−t,v2=t,v3=t.
Therefore
v=⎝⎛−ttt⎠⎞=⎝⎛−111⎠⎞tThe principal axis is
31⎝⎛−111⎠⎞
P=⎝⎛2/61/61/60−1/21/2−1/31/31/3⎠⎞
P−1=PT=⎝⎛2/60−1/31/6−1/21/31/61/21/3⎠⎞
D=⎝⎛−400000005⎠⎞
⎝⎛x1y1z1⎠⎞=PT⎝⎛xyz⎠⎞
x1=(2/6)x+(1/6)y+(1/6)zy1=(0)x+(−1/2)y+(1/2)zz1=(−1/3)x+(1/3)y+(1/3)z The orthogonal canonical reduction of the quadratic form is
−4x12+5z12=0 The principal axes are
p1=61⎝⎛211⎠⎞,p2=21⎝⎛0−11⎠⎞,p3=31⎝⎛−111⎠⎞
Comments