Let "A(1,-1,-2), B(1,-4,2),C(3,0,2),D(4,-3,-2)"
Create 3 vectors "\\overrightarrow{AB}, \\overrightarrow{AC}," and "\\overrightarrow{AD}"
"\\overrightarrow{AB}=(1-1,-4-(-1),2-(-2))=(0,-3,4)"
"\\overrightarrow{AC}=(3-1,0-(-1),2-(-2))=(2,1,4)"
"\\overrightarrow{AD}=(4-1,-3-(-1),-2-(-2))=(3,-2,0)"
"\\overrightarrow{AB}\\cdot(\\overrightarrow{AC}\\times \\overrightarrow{AD})=\\begin{vmatrix}\n b_1 & b_2 & b_3 \\\\\n c_1 & c_2 & c_3 \\\\\n d_1 & d_2 & d_3\n\\end{vmatrix}="
"=\\begin{vmatrix}\n 0 & -3 & 4\\\\\n 2 & 1 & 4 \\\\\n 3 & -2 & 0\n\\end{vmatrix}=0-2\\begin{vmatrix}\n -3 & 4 \\\\\n -2 & 0\n\\end{vmatrix}+3\\begin{vmatrix}\n -3 & 4 \\\\\n 1 & 4\n\\end{vmatrix}="
"=-2(-3(0)-4(-2))+3(-3(4)-4(1))="
"=-16-48=-64\\not=0"
The vectors are not coplanar, as their scalar triple product is not equal to zero.
"A(1,-1,-2): a-b-2c+d=0"
"C(3,0,2): 3a+2c+d=0"
"D(4,-3,-2): 4a-3b-2c+d=0"
"4a-3b-2c+d-a+b+2c-d=0=>3a=2b"
"3a+2c+d-a+b+2c-d=0=>4c=-2a-b"
Let "a=8." Then "b=12, 4c=-16-12=-28=>c=-7"
"8-12-2(-7)+d=0=>d=-10"
The plane passing through three points.
Check for "B^*(2,3,6)"
"A(1,-1,-2), B^*(2,3,6),C(3,0,2),D(4,-3,-2)"
Comments
Leave a comment