If logπ π = 1/5 solve the equation , π₯ logπ π + (π₯ + 2) logπ π2 = 3
Given: logπΒ π = 1/5 ...(1)
Now, π₯ logπΒ π + (π₯ + 2) logπΒ π2Β = 3Β
"\\Rightarrow"Β π₯ logπΒ π + (π₯ + 2).(2 logπΒ q)Β = 3 ["\\because log a^m = m. log a"Β ]
"\\Rightarrow"Β Β "\\frac{x}{5}+(x+2)\\times2\\times \\frac 1 5=3"Β [From eq. (1)]
"\\Rightarrow x+2x+4=15\\\\\n\\Rightarrow 3x=11\n\\\\\\Rightarrow x =\\frac {11}{3}"
Comments
Leave a comment