Answer to Question #261012 in Algebra for Master J

Question #261012

Given that 𝑇 = 3√ 32𝑐4βˆ’π‘ž /2 . Show that 𝑐 = 1/2 4√2𝑇3 + π‘ž   


1
Expert's answer
2021-11-04T20:09:15-0400

𝑇=32𝑐4βˆ’π‘ž32𝑇 = \frac{\sqrt[3]{32𝑐^4βˆ’π‘ž }}{2}


2Γ—T=32𝑐4βˆ’q32Γ—T=\sqrt[3]{32𝑐^4-q}


23Γ—T3=32𝑐4βˆ’q2^3Γ—T^3={32𝑐^4-q}


8T3=32𝑐4βˆ’q8T^3={32𝑐^4-q}

8T3+q=32𝑐48T^3+q={32𝑐^4}

\sqrt[4]\frac{8T^3+q}{32}={𝑐}


c=122T3+q4c=\frac{1}{2}\sqrt[4]{2T^3+q}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment