(1) The table below shows the calories, fat, and carbohydrates per ounce for three brands of cereal, and the total amount of calories, fat, and carbohydrates required for a special diet. Calories Fat Carbohydrates Cereal Brand X 50 0 22 Cereal Brand Y 108 0.1 25.5 Cereal Brand Z 127 5.5 18 Total Required 393 5.7 91 (i) Using the information in the table above, write a system of three equations. (ii) Write a system in matrix form Ax b ๏ฝ . (ii) Using the Cramer's Rule or Inverse Method, find the amount of each brand of cereal that will give the level of nutrition required.ย
Using cramer's Rule;
"\\begin{pmatrix}\n 50&108& 127\\\\\n 0&0.1 & 5.5\\\\\n22&25.5&18\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y \\\\\nz\n\\end{pmatrix}=\\begin{pmatrix}\n 393 \\\\\n 5.7\\\\\n91\n\\end{pmatrix}"
Let "D=" "\\begin{pmatrix}\n 50&108 & 127 \\\\\n 0 & 0.1&5.5\\\\\n22&25.5&18\n\\end{pmatrix}"
"D_x=\\begin{pmatrix}\n 393& 108&127\\\\\n 5.7&0.1 & 5.5\\\\\n91&25.5&18\n\\end{pmatrix}"
"D_y=\\begin{pmatrix}\n 50&393 & 127 \\\\\n 0 & 5.7&5.5\\\\\n22&91&18\n\\end{pmatrix}"
"D_2=\n\n\n\n\n\n\\begin{pmatrix}\n 50&108 & 393 \\\\\n 0&0.1 & 5.7\\\\\n22&25.5&91\n\\end{pmatrix}"
Det "D=50\\begin{vmatrix}\n 0.1 & 5.5 \\\\\n 25.5 & 18\n\\end{vmatrix}-108\\begin{vmatrix}\n 0& 5.5 \\\\\n 22 & 18\n\\end{vmatrix}+127\\begin{vmatrix}\n 0 & 0.1\\\\\n 22 & 25.5\n\\end{vmatrix}"
"=50(-138.45)-108(-121)+127(-2.2)"
"=5866.1"
Det "D_x=393\\begin{vmatrix}\n 0.1& 5.5 \\\\\n 25.5& 18\n\\end{vmatrix}-108\\begin{vmatrix}\n 5.7& 5.5 \\\\\n 91& 18\n\\end{vmatrix}+127\\begin{vmatrix}\n 5.7 & 0.1\\\\\n 91 & 25.5\n\\end{vmatrix}"
"=393(-138.45)-108(-397.9)+127(136.25)"
"=5866.1"
Det "D_y=50\\begin{vmatrix}\n 5.7 & 5.5 \\\\\n 91& 18\n\\end{vmatrix}-393\\begin{vmatrix}\n 0& 5.5 \\\\\n 22& 18\n\\end{vmatrix}+127\\begin{vmatrix}\n 0& 5.7 \\\\\n 22 & 91\n\\end{vmatrix}"
"=50(-397.9)-393(-121)+127(-125.4)"
"=11732.2"
Det "D_2=50\\begin{vmatrix}\n 0.1 & 5.7 \\\\\n 25.5 & 91\n\\end{vmatrix}-108\\begin{vmatrix}\n 0& 5.7 \\\\\n 22 & 91\n\\end{vmatrix}+393\\begin{vmatrix}\n 0& 0.1\\\\\n 22& 25.5\n\\end{vmatrix}"
"=50(-136.25)-108(-125.4)+393(-22)"
"=5866.1"
"x=\\frac{|D_x|}{|D|}=\\frac{5866.1}{5866.1}=1,"
"y=\\frac{|D_y|}{|D|}=\\frac{11732.2}{5866.1}=2"
"z=\\frac{|D_z|}{|D|}=\\frac{5866.1}{5866.1}=1"
Amount of each brand of cereal that will give the level of nutrition required
Cereal Brand "X=1" ounce
Cereal Brand "Y=2" ounces
Cereal Brand "Z=1" ounce
Comments
Leave a comment