Question #260598

Show that,

  1. lim z->infinity (π‘Žπ‘§+𝑏) 3/(𝑧+𝑑)
  2. lim z->1 (1βˆ’z bar)/(1βˆ’z) does not exist
1
Expert's answer
2021-11-08T02:56:09-0500

1.lim zβˆ’>∞ (π‘Žπ‘§+𝑏)3(𝑧+𝑑)3 apply l’hospital rule=lim zβˆ’>∞ 3a(π‘Žπ‘§+𝑏)23(𝑧+𝑑)2=lim zβˆ’>∞ a(π‘Žπ‘§+𝑏)2(𝑧+𝑑)2apply l’hospital rule=lim zβˆ’>∞ 2a2(π‘Žπ‘§+𝑏)2(𝑧+𝑑)=lim zβˆ’>∞ a2(π‘Žπ‘§+𝑏)(𝑧+𝑑)apply l’hospital rule=lim zβˆ’>∞ a31=a32.lim zβˆ’>1 1βˆ’zΛ‰1βˆ’z=lim (x,y)βˆ’>(1,0) 1βˆ’x+iy1βˆ’xβˆ’iyWe choose a path such that it satisfy the point (1,0). Let x=my+1 be that path where m is a real number,=lim yβˆ’>0 1βˆ’myβˆ’1+iy1βˆ’myβˆ’1βˆ’iy=lim yβˆ’>0 (βˆ’m+i)y(βˆ’mβˆ’i)y=lim yβˆ’>0 (βˆ’m+i)(βˆ’mβˆ’i)=doesn’t existSince, for different value of m, we get different limits.1.\\ lim_{ z->\infin} \frac{(π‘Žπ‘§+𝑏)^3}{(𝑧+𝑑)^3 }\\ \text{apply l'hospital rule}\\ =lim_{ z->\infin} \frac{3a(π‘Žπ‘§+𝑏)^2}{3(𝑧+𝑑)^2}\\ =lim_{ z->\infin} \frac{a(π‘Žπ‘§+𝑏)^2}{(𝑧+𝑑)^2}\\ \text{apply l'hospital rule}\\ =lim_{ z->\infin} \frac{2a^2(π‘Žπ‘§+𝑏)}{2(𝑧+𝑑)}\\ =lim_{ z->\infin} \frac{a^2(π‘Žπ‘§+𝑏)}{(𝑧+𝑑)}\\ \text{apply l'hospital rule}\\ =lim_{ z->\infin} \frac{a^3}{1}\\ =a^3\\ 2.\\ lim_{ z->1} \frac{1-\bar z}{1-z}\\ =lim_{ (x,y)->(1,0)} \frac{1-x+iy}{1-x-iy}\\ \text{We choose a path such that it satisfy the point (1,0). Let x=my+1 be that path where m is a real number,}\\ =lim_{ y->0} \frac{1-my-1+iy}{1-my-1-iy}\\ =lim_{ y->0} \frac{(-m+i)y}{(-m-i)y}\\ =lim_{ y->0} \frac{(-m+i)}{(-m-i)}\\ =\text{doesn't exist}\\ \text{Since, for different value of m, we get different limits.}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS