1.lim zβ>ββ (z+d)3 (az+b)3βapply lβhospital rule=lim zβ>ββ 3(z+d)23a(az+b)2β=lim zβ>ββ (z+d)2a(az+b)2βapply lβhospital rule=lim zβ>ββ 2(z+d)2a2(az+b)β=lim zβ>ββ (z+d)a2(az+b)βapply lβhospital rule=lim zβ>ββ 1a3β=a32.lim zβ>1β 1βz1βzΛβ=lim (x,y)β>(1,0)β 1βxβiy1βx+iyβWe choose a path such that it satisfy the point (1,0). Let x=my+1 be that path where m is a real number,=lim yβ>0β 1βmyβ1βiy1βmyβ1+iyβ=lim yβ>0β (βmβi)y(βm+i)yβ=lim yβ>0β (βmβi)(βm+i)β=doesnβt existSince, for different value of m, we get different limits.
Comments