Given that 𝑇 = 3√ 32𝑐4−𝑞/2 . Show that 𝑐 = 1/2 4√2𝑇2 + 𝑞
T=32c4−q23=T3=32c4−q2=T3+q2=32c4=132(T3+q2)=c4=116⋅12(2T3+q)=c4 ⟹ c=1212(2T3+q)4T = \sqrt[3]{32c^4-\frac{q}{2}}\\ =T^3 = 32c^4-\frac{q}{2}\\ =T^3+\frac{q}{2}=32c^4\\ =\frac{1}{32}(T^3+\frac{q}{2})=c^4\\ =\frac{1}{16}\cdot\frac{1}{2}(2T^3+q)=c^4\\ \implies c = \frac{1}{2}\sqrt[4]{\frac{1}{2}(2T^3+q)}T=332c4−2q=T3=32c4−2q=T3+2q=32c4=321(T3+2q)=c4=161⋅21(2T3+q)=c4⟹c=21421(2T3+q)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments