Given that π = 3β 32π4βπ/2 . Show that π = 1/2 4β2π2 + π Β Β
"T = \\sqrt[3]{32c^4-\\frac{q}{2}}\\\\\n=T^3 = 32c^4-\\frac{q}{2}\\\\\n=T^3+\\frac{q}{2}=32c^4\\\\\n=\\frac{1}{32}(T^3+\\frac{q}{2})=c^4\\\\\n=\\frac{1}{16}\\cdot\\frac{1}{2}(2T^3+q)=c^4\\\\\n\\implies c = \\frac{1}{2}\\sqrt[4]{\\frac{1}{2}(2T^3+q)}"
Comments
Leave a comment