Answer to Question #261114 in Algebra for Sam

Question #261114

Express the following in rectangular and polar form, if Z1 = 3+ 4i


Z2= 2+3i



1. Z1*Z2


2. Z1-Z2


3. Z1/Z2


4. |Z1|


5. |Z2|



(2)if Z1=50<30°and Z2=30<60°find in rectangular form the following


1. |Z1|


2. |Z2|


3. |Z1|-|Z2|


4. Z1*Z2


5. |Z2-Z1|


6. |Z2|/|Z1|

1
Expert's answer
2021-11-05T06:54:21-0400

(1)

1.

"z_1\\cdot z_2=(3+ 4i)(2+ 3i)=6+9i+8i-12"

"=-6+17i"

"|z_1\\cdot z_2|=\\sqrt{(-6)^2+17^2}=5\\sqrt{17}"

"\\tan \\theta=\\dfrac{17}{-6}, 90\\degree<\\theta<180\\degree"

"z_1\\cdot z_2=5\\sqrt{17}\\angle\\big(180\\degree-\\tan^{-1}\\dfrac{17}{6}\\big)"

2.

"z_1-z_2=(3+ 4i)-(2+ 3i)=1+i"

"|z_1- z_2|=\\sqrt{1^2+1^2}=\\sqrt{2}"

"\\tan \\theta=\\dfrac{1}{1}=1, 0\\degree<\\theta<90\\degree"

"z_1-z_2=\\sqrt{2}\\angle45\\degree"

3.

"z_1\/ z_2=(3+ 4i)\/(2+ 3i)=\\dfrac{(3+4i)(2-3i)}{2^2+3^2}"

"=\\dfrac{6-9i+8i+12}{13}=\\dfrac{18}{13}-\\dfrac{1}{13}i"

"|z_1\/ z_2|=\\sqrt{(\\dfrac{18}{13})^2+(-\\dfrac{1}{13})^2}=\\dfrac{5\\sqrt{13}}{13}"

"\\tan \\theta=\\dfrac{-\\dfrac{1}{13}}{\\dfrac{18}{13}}=-\\dfrac{1}{18}, 270\\degree<\\theta<360\\degree"

"z_1\/ z_2=\\dfrac{5\\sqrt{13}}{13}\\angle\\big(360\\degree-\\tan^{-1}\\dfrac{1}{18}\\big)"

4.


"|z_1|=\\sqrt{3^2+4^2}=5"

"|z_1|=5+0i"

"|z_1|=5\\angle0\\degree"

5.


"|z_2|=\\sqrt{2^2+3^2}=\\sqrt{13}"

"|z_2|=\\sqrt{13}+0i"

"|z_2|=\\sqrt{13}\\angle0\\degree"

(2)

1.


"|z_1|=50+0i"

2.


"|z_2|=30+0i"



3.


"|z_1|-|z_2|=50-30=20"


"|z_1|-|z_2|=20+0i"



4.


"z_1\\cdot z_2=50\\cdot 30(\\cos (30\\degree+60\\degree)+i\\sin (30\\degree+60\\degree))"




"=1500(0+i(1))"


"z_1\\cdot z_2=0+1500i"

5.


"z_1=50(\\cos 30\\degree+i\\sin 30\\degree)=25\\sqrt{3}+25i"

"z_2=30(\\cos 60\\degree+i\\sin 60\\degree)=15+15\\sqrt{3}i"


"z_2-z_1=(15-25\\sqrt{3})+(15\\sqrt{3}-25)i"

"|z_2-z_1|=\\sqrt{(15-25\\sqrt{3})^2+(15\\sqrt{3}-25)^2}"

"=\\sqrt{225-750\\sqrt{3}+1875+675-750\\sqrt{3}+625}"

"=10\\sqrt{34-15\\sqrt{3}}"

"|z_2-z_1|=10\\sqrt{34-15\\sqrt{3}}+0i"

6.


"\\dfrac{|z_2|}{|z_1|}=\\dfrac{30}{50}=\\dfrac{3}{5}"


"|z_2|\/|z_1|=\\dfrac{3}{5}+0i"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS