Question #254911

You are given that 1+i is a root of the equation z^2+2z^2+az+b=0,where a and b are real numbers .which of the following is true?


1
Expert's answer
2021-10-25T13:36:29-0400

z2+2z2+az+b=0z^2+2z^2+az+b=0

3z2+az+b=0\Rightarrow 3z^2+az+b=0

As 1+i1+i is a root of 3z2+az+b=03z^2+az+b=0

So, 3(1+i)2+a(1+i)+b=03(1+i)^2+a(1+i)+b=0 [Put z=1+iz=1+i ]

\Rightarrow 3(1+i2+2i)+a+ia+b=03(1+i^2+2i)+a+ia+b=0

3(11+2i)+a+ia+b=0\Rightarrow 3(1-1+2i)+a+ia+b=0

6i+ia+a+b=0\Rightarrow 6i+ia+a+b=0

i(6+a)+a+b=0\Rightarrow i(6+a)+a+b=0

Comparing real and imaginary parts both sides, we get

6+a=0,a+b=0a=6,b=aa=6,b=66+a=0, a+b=0 \\\Rightarrow a=-6, b=-a \\\Rightarrow a=-6, b=6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS