You are given that 1+i is a root of the equation z^2+2z^2+az+b=0,where a and b are real numbers .which of the following is true?
z2+2z2+az+b=0z^2+2z^2+az+b=0z2+2z2+az+b=0
⇒3z2+az+b=0\Rightarrow 3z^2+az+b=0⇒3z2+az+b=0
As 1+i1+i1+i is a root of 3z2+az+b=03z^2+az+b=03z2+az+b=0
So, 3(1+i)2+a(1+i)+b=03(1+i)^2+a(1+i)+b=03(1+i)2+a(1+i)+b=0 [Put z=1+iz=1+iz=1+i ]
⇒\Rightarrow⇒ 3(1+i2+2i)+a+ia+b=03(1+i^2+2i)+a+ia+b=03(1+i2+2i)+a+ia+b=0
⇒3(1−1+2i)+a+ia+b=0\Rightarrow 3(1-1+2i)+a+ia+b=0⇒3(1−1+2i)+a+ia+b=0
⇒6i+ia+a+b=0\Rightarrow 6i+ia+a+b=0⇒6i+ia+a+b=0
⇒i(6+a)+a+b=0\Rightarrow i(6+a)+a+b=0⇒i(6+a)+a+b=0
Comparing real and imaginary parts both sides, we get
6+a=0,a+b=0⇒a=−6,b=−a⇒a=−6,b=66+a=0, a+b=0 \\\Rightarrow a=-6, b=-a \\\Rightarrow a=-6, b=66+a=0,a+b=0⇒a=−6,b=−a⇒a=−6,b=6
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments