Question #254568

1) If (n2+1)t=u + v and (n+1/n)t= u-v, prove that u/v = n+1/n-1 and find t in terms of u,v only

2) For what values of c is x=-3 a root of the equation, x2+(c-1)x-2=c2? What are then the other values of x?


1
Expert's answer
2021-10-21T15:02:14-0400

Solution. 1) Prove that u/v = n+1/n-1.

According to the condition of the problem (n2+1)t=u + v and (n+1/n)t= u-v. Let's add u + v and u-v get


(n2+1)t+(n+1n)t=u+v+uv(n^2+1)t+(n+\frac{1}{n})t=u+v+u-v

(n2+1)t+(n2+1n)t=2u(n^2+1)t+(\frac{n^2+1}{n})t=2u

u=(n2+1)(n+1)t2nu=\frac{(n^2+1)(n+1)t}{2n}

Subtract u-v from u + v get

u+v(uv)=(n2+1)t(n+1n)tu + v -(u -v)=(n^2+1)t-(n+\frac{1}{n})t

2v=(n2+1)t(n2+1n)t2v=(n^2+1)t-(\frac{n^2+1}{n})t

v=(n2+1)(n1)t2nv=\frac{(n^2+1)(n-1)t}{2n}

Find the ratio u/v


uv=(n2+1)(n+1)t2n(n2+1)(n1)t2n=n+1n1.\frac{u}{v}=\frac{\frac{(n^2+1)(n+1)t}{2n}}{\frac{(n^2+1)(n-1)t}{2n}}=\frac{n+1}{n-1}.

Find t in terms of u,v. 


(n+1n)t=uv(n2+1)tn=uv(n+\frac{1}{n})t=u-v \to \frac{(n^2+1)t}{n}=u-v

On the other hand (n2+1)t=u + v. As result get


u+vn=uvn=u+vuv\frac {u+v}{n} = u - v \to n =\frac {u+v}{u-v}

Substituting n=(u+v)/(u-v) get


((u+v)2(uv)2+1)t=u+v(\frac{(u+v)^2}{(u-v)^2}+1)t=u+v

u2+2uv+v2+u22uv+v2(uv)2t=u+v2u2+2v2(uv)2t=u+v\frac{u^2+2uv+v^2+u^2-2uv+v^2}{(u-v)^2}t=u+v \to \frac{2u^2+2v^2}{(u-v)^2}t=u+v

t=(u+v)(uv)22(u2+v2)t=\frac{(u+v)(u-v)^2}{2(u^2+v^2)}

2) If x=-3 a root of the equation, x2+(c-1)x-2=c2 get


(3)2+(c1)(3)2=c2(-3)^2+(c-1)(-3)-2=c^2

c2+3c10=0c^2+3c-10=0

The roots of the quadratic equation


с1=2с_1=2

and

c2=5.c_2=-5.

For c=2 get equation


x2+(21)x2=22x2+x6=0.x^2+(2-1)x-2=2^2 \to x^2+x-6=0.

The roots of the quadratic equation x1=3x_1=-3 and x2=2x_2=2 .

For c=-5 get equation


x2+(51)x2=(5)2x26x27=0.x^2+(-5-1)x-2=(-5)^2 \to x^2-6x-27=0.

The roots of the quadratic equation x3=3x_3=-3 and x4=9x_4=9.

The other values of x=2 and x =9

Answer. 1) t=(u+v)(uv)22(u2+v2)t=\frac{(u+v)(u-v)^2}{2(u^2+v^2)} ; 2) с1=2с_1=2 and c2=5c_2=-5; the other values of x=2 and x =9.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS