it is given that z+2i=iz+"\\lambda", w/z=2+2i, Imw=8, where z and w are complex numbers and "\\lambda" is a real constant. what is the value of "\\lambda"
"z+2i=iz+\\lambda\\\\\\frac{w}{z}=2+2i\\\\z(1-i)=\\lambda-2i\\\\z=\\frac{\\lambda-2i}{1-i}"
Rationalise the denominator
"z=\\frac{(\\lambda-2i)(1+i)}{(1)^2-(-1)^2}=\\frac{\\lambda+\\lambda i-2i-2i^2}{2}"
"z=\\frac{\\lambda+2}{2}+\\frac{i(\\lambda-2)}{2}"
"z=\\frac{\\lambda+2}{2}+\\frac{i(\\lambda-2)}{2}"
Given, imaginary part of w=8,
"w=(2+2i)z"
"=(2+2i)\\frac{(\\lambda+2)+i(\\lambda-2)}{2}"
"=(1+i)[(\\lambda+2)+i(\\lambda-2)]"
"=\\lambda+2+i(\\lambda-2)+i(\\lambda+2)-1(\\lambda-2)\\\\=\\lambda+2-\\lambda+2+i(\\lambda-2+\\lambda+2)\\\\=4+i(2\\lambda)"
Since, lm(w)=8
"2\\lambda=8\\\\\\lambda=4"
Comments
Leave a comment