x 2 − 2 x − 8 ≤ − x + 2 \sqrt {x^2-2x-8}\leq -x+2 x 2 − 2 x − 8 ≤ − x + 2 . . . ( 1 ) ...(1) ... ( 1 )
We know that, if f ( x ) ≤ g ( x ) \sqrt {f(x)}\leq g(x) f ( x ) ≤ g ( x ) then g ( x ) ≥ 0 g(x) \geq0 g ( x ) ≥ 0
So, − x + 2 ≥ 0 ⇒ x ≤ 2 . . . ( 2 ) -x+2\geq0\Rightarrow x\leq2 \ ...(2) − x + 2 ≥ 0 ⇒ x ≤ 2 ... ( 2 )
As − x + 2 ≥ 0 -x+2\geq0 − x + 2 ≥ 0
So, squaring both sides in equation (1), we get
x 2 − 2 x − 8 ≤ ( − x + 2 ) 2 ⇒ x 2 − 2 x − 8 ≤ x 2 + 4 − 4 x ⇒ 2 x ≤ 12 ⇒ x ≤ 6 . . . ( 3 ) x^2-2x-8\leq(-x+2)^2
\\\Rightarrow x^2-2x-8\leq x^2+4-4x
\\\Rightarrow 2x\leq12
\\\Rightarrow x\leq6 \ ...(3) x 2 − 2 x − 8 ≤ ( − x + 2 ) 2 ⇒ x 2 − 2 x − 8 ≤ x 2 + 4 − 4 x ⇒ 2 x ≤ 12 ⇒ x ≤ 6 ... ( 3 )
Also x 2 − 2 x − 8 ≥ 0 x^2-2x-8\geq 0 x 2 − 2 x − 8 ≥ 0 as value inside square root can not be negative.
⇒ ( x + 2 ) ( x − 4 ) ≥ 0 \\\Rightarrow (x+2)(x-4)\geq0 ⇒ ( x + 2 ) ( x − 4 ) ≥ 0
From the above, we can say that
x ≤ − 2 x\leq-2 x ≤ − 2 or x ≥ 4 . . . ( 4 ) x\geq4 \ ...(4) x ≥ 4 ... ( 4 )
From equation (2), (3) and (4)
From the graph, we can say that the common solution is
x ≤ − 2 x\leq-2 x ≤ − 2
Comments