Solve the inequality
x-3 ≤ 2x+5 < -x+13
√(x2-2x-3) ≥ Ix-2I - 2x
1.
"\\begin{cases}\n x\\geq-8 \\\\\n 3x<8\n\\end{cases}"
"\\begin{cases}\n x\\geq-8 \\\\\n x<8\/3\n\\end{cases}"
Answer: "-8\\leq x<8\/3"
"x\\in[-8, 8\/3)"
2.
"x\\leq-1\\ or\\ x\\geq3"
"x\\leq-1"
"\\sqrt{x^2-2x-3} \u2265 2-3x"
"2-3x>0, if\\ x\\leq-1"
"x^2-2x-3\\geq(2-3x)^2"
"x^2-2x-3\\geq4-12x+9x^2"
"D=(-10)^2-4(8)(7)=-124<0"
"8>0, D<0, 8x^2-10x+7>0, x\\in \\R"
There are no solutions for "x\\leq-1."
"x\\geq3"
"\\sqrt{x^2-2x-3} \u2265 -x-2"
"-x-2<0, if\\ x\\geq3"
Then
"\\sqrt{x^2-2x-3}\\geq0>-x-2, x\\geq3"
Answer: "x\\geq3"
"x\\in[3,\\infin)"
Comments
Leave a comment