Question #223088

Solve the inequality

x-3 ≤ 2x+5 < -x+13

√(x2-2x-3) ≥ Ix-2I - 2x


1
Expert's answer
2021-08-31T13:47:26-0400

1.


{x32x+52x+5<x+13\begin{cases} x-3\leq2x+5 \\ 2x+5<-x+13 \end{cases}

{x83x<8\begin{cases} x\geq-8 \\ 3x<8 \end{cases}

{x8x<8/3\begin{cases} x\geq-8 \\ x<8/3 \end{cases}

Answer: 8x<8/3-8\leq x<8/3


x[8,8/3)x\in[-8, 8/3)

2.


x22x3x22x\sqrt{x^2-2x-3} ≥ |x-2|- 2x


x22x30=>(x+1)(x3)0x^2-2x-3\geq0=>(x+1)(x-3)\geq0

x1 or x3x\leq-1\ or\ x\geq3

x1x\leq-1


x22x32x2x\sqrt{x^2-2x-3} ≥ 2-x-2x

x22x323x\sqrt{x^2-2x-3} ≥ 2-3x

23x>0,if x12-3x>0, if\ x\leq-1

x22x3(23x)2x^2-2x-3\geq(2-3x)^2

x22x3412x+9x2x^2-2x-3\geq4-12x+9x^2


8x210x+708x^2-10x+7\leq0

D=(10)24(8)(7)=124<0D=(-10)^2-4(8)(7)=-124<0

8>0,D<0,8x210x+7>0,xR8>0, D<0, 8x^2-10x+7>0, x\in \R

There are no solutions for x1.x\leq-1.


x3x\geq3



x22x3x22x\sqrt{x^2-2x-3} ≥x-2-2x

x22x3x2\sqrt{x^2-2x-3} ≥ -x-2

x2<0,if x3-x-2<0, if\ x\geq3

Then

x22x30>x2,x3\sqrt{x^2-2x-3}\geq0>-x-2, x\geq3

Answer: x3x\geq3


x[3,)x\in[3,\infin)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS