Question #223086

Solve the following equations

In(x-2) +In2 = Iny

Log3x = y = Log9(2x-1)



1
Expert's answer
2022-01-03T18:51:58-0500

Explanations & Calculations

  • The logarithmic notation can be taken out and a linear equation can be written between x and y.

ln(x2)+ln2=lnyln(x2)=lnyln2ln(x2)=lny2(x2)=y2y=2x4(1)\qquad\qquad \begin{aligned} \small \ln{(x-2)}+\ln 2&=\small \ln y\\ \small \ln(x-2)&=\small \ln y-\ln 2\\ \small \ln(x-2)&=\small \ln{\frac{y}{2}}\\ \small (x-2)&=\small \frac{y}{2}\\ \small y&=\small 2x-4\cdots(1) \end{aligned}


  • A relationship between x\small x  & y\small y and also the value of x\small x directly can be found by the second set of equations as it contains 2 equations in one line.

log3(x)=yx=3y(2)log3(x)=log9(2x1)=log3(2x1)log3(9)=log3(2x1)22log3(x)=log3(2x1)log3(x2)=log3(2x1)x2=2x1x22x+1=0(x1)2=0x={1twice\qquad\qquad \begin{aligned} \small \log_3(x)&=\small y\\ \small x&=\small 3^y\cdots\cdots(2)\\ \\ \small \log_3(x)&=\small \log_9(2x-1)\\ &=\small \frac{\log_3(2x-1)}{\log_3(9)}=\frac{\log_3(2x-1)}{2}\\ \small 2\log_3(x)&=\small\log_3(2x-1)\\ \small \log_3(x^2)&=\small \log_3(2x-1)\\ \small x^2&=\small 2x-1\to x^2-2x+1=0\to(x-1)^2=0\\ \small x &=\small \begin{cases} 1-\text{twice} \end{cases} \end{aligned}


  • Then the one of the set of corresponding values of y\small y can be calculated through (1)\small (1) and the others through (2)\small (2) .

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS