For what real x, can we have the inequality I4x-x2-3I / √(x+1) >0
Solution:
∣4x−x2−3∣x+1>0⇒∣−x2+4x−3∣x+1>0⇒∣−x2+3x+x−3∣x+1>0⇒∣(−x+1)(x−3)∣x+1>0\dfrac{\left|4x-x^2-3\right|}{\sqrt{x+1}}>0 \\ \Rightarrow\dfrac{\left|-x^2+4x-3\right|}{\sqrt{x+1}}>0 \\ \Rightarrow\dfrac{\left|-x^2+3x+x-3\right|}{\sqrt{x+1}}>0 \\ \Rightarrow\dfrac{\left|(-x+1)(x-3)\right|}{\sqrt{x+1}}>0x+1∣∣4x−x2−3∣∣>0⇒x+1∣∣−x2+4x−3∣∣>0⇒x+1∣∣−x2+3x+x−3∣∣>0⇒x+1∣(−x+1)(x−3)∣>0
Identifying the intervals: −1<x<1or 1<x<3or x>3-1<x<1\quad \mathrm{or}\quad \:1<x<3\quad \mathrm{or}\quad \:x>3−1<x<1or1<x<3orx>3
Finding non-negative value for radical: x≥−1x\ge-1x≥−1
Merging overlapping intervals, the solution is (−1, 1)∪(1, 3)∪(3, ∞ )\left(-1,\:1\right)\cup \left(1,\:3\right)\cup \left(3,\:\infty \:\right)(−1,1)∪(1,3)∪(3,∞)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments