For what real x, can we have the inequality I4x-x2-3I / √(x+1) >0
Solution:
"\\dfrac{\\left|4x-x^2-3\\right|}{\\sqrt{x+1}}>0\n\\\\ \\Rightarrow\\dfrac{\\left|-x^2+4x-3\\right|}{\\sqrt{x+1}}>0\n\\\\ \\Rightarrow\\dfrac{\\left|-x^2+3x+x-3\\right|}{\\sqrt{x+1}}>0\n\\\\ \\Rightarrow\\dfrac{\\left|(-x+1)(x-3)\\right|}{\\sqrt{x+1}}>0"
Identifying the intervals: "-1<x<1\\quad \\mathrm{or}\\quad \\:1<x<3\\quad \\mathrm{or}\\quad \\:x>3"
Finding non-negative value for radical: "x\\ge-1"
Merging overlapping intervals, the solution is "\\left(-1,\\:1\\right)\\cup \\left(1,\\:3\\right)\\cup \\left(3,\\:\\infty \\:\\right)"
Comments
Leave a comment