Solution :
∣ 4 x − x 2 − 3 ∣ x + 1 > 0 ⇒ ∣ − x 2 + 4 x − 3 ∣ x + 1 > 0 ⇒ ∣ − x 2 + 3 x + x − 3 ∣ x + 1 > 0 ⇒ ∣ ( − x + 1 ) ( x − 3 ) ∣ x + 1 > 0 \dfrac{\left|4x-x^2-3\right|}{\sqrt{x+1}}>0
\\ \Rightarrow\dfrac{\left|-x^2+4x-3\right|}{\sqrt{x+1}}>0
\\ \Rightarrow\dfrac{\left|-x^2+3x+x-3\right|}{\sqrt{x+1}}>0
\\ \Rightarrow\dfrac{\left|(-x+1)(x-3)\right|}{\sqrt{x+1}}>0 x + 1 ∣ ∣ 4 x − x 2 − 3 ∣ ∣ > 0 ⇒ x + 1 ∣ ∣ − x 2 + 4 x − 3 ∣ ∣ > 0 ⇒ x + 1 ∣ ∣ − x 2 + 3 x + x − 3 ∣ ∣ > 0 ⇒ x + 1 ∣ ( − x + 1 ) ( x − 3 ) ∣ > 0
Identifying the intervals: − 1 < x < 1 o r 1 < x < 3 o r x > 3 -1<x<1\quad \mathrm{or}\quad \:1<x<3\quad \mathrm{or}\quad \:x>3 − 1 < x < 1 or 1 < x < 3 or x > 3
Finding non-negative value for radical: x ≥ − 1 x\ge-1 x ≥ − 1
Merging overlapping intervals, the solution is ( − 1 , 1 ) ∪ ( 1 , 3 ) ∪ ( 3 , ∞ ) \left(-1,\:1\right)\cup \left(1,\:3\right)\cup \left(3,\:\infty \:\right) ( − 1 , 1 ) ∪ ( 1 , 3 ) ∪ ( 3 , ∞ )
Comments