Question #223047


GIven that log36=m, and log65=n express log310 in terms of m and n


1
Expert's answer
2021-08-30T19:06:32-0400

Use the formula loga(bc)=logab+logaclog_a (bc)=log_a b +log_a c:


log310=log3(25)=log32+log35log_3 10 =log_3 (2\cdot 5)=log_3 2+log_3 5

Express log32log_3 2 from the first equality:


log36=mlog_3 6 = mlog3(23)=mlog_3 (2\cdot3)=mlog32+log33=mlog_3 2+log_3 3=mlog32+1=mlog_3 2+1=mlog32=m1log_3 2=m-1

Express log35log_3 5 by using formulas logab=1logba,logablogac=logcblog_a b=\frac{1}{log_b a}, \frac{log_a b}{log_a c}=log_c b


log35=log65log63=log65log36=nmlog_3 5=\frac{log_6 5}{log_6 3}=log_6 5\cdot log_3 6=nm

Thus,


log310=log32+log35=m1+nm=mn+m1log_3 10 =log_3 2+log_3 5 =m-1+nm=mn+m-1

Answer: mn+m1mn+m-1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS