Solve the equation logxe2e = eInx-e
We know that,
logxe>0{ \log _{x} e>0}logxe>0
So,logxe≠−1Now,logxe=12⇒e=x12⇒x=e2Ans:x=e2So, \log _{x} e \neq-1 \\Now, \log _{x} e=\frac{1}{2} \\\Rightarrow e=x^{\frac{1}{2}}\\\Rightarrow x=e^2 \\Ans: x=e^2So,logxe=−1Now,logxe=21⇒e=x21⇒x=e2Ans:x=e2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment