Answer to Question #223042 in Algebra for Darren Agbor

Question #223042

Solve the equation logxe2e = eInx-e


1
Expert's answer
2021-08-31T11:54:26-0400

logxe2e=elnxelogxe2e=elogexelogxe2e=elogxee2elogxe=e(1logxe1)2logxe=(1logxe1)Letlogxe=tSo,2t=1t12t2+t1=02t2+2tt1=02t(t+1)1(t+1)=0(2t1)(t+1)=02t1=0 or t+1=0t=12,1Aslogxe=t\log _{x} e^{2 e}=e \ln x-e \\\Rightarrow \log _{x} e^{2 e}=e \log _{e} x-e \\\Rightarrow \log _{x} e^{2 e}=\frac{e}{\log _{x} e}-e \\\Rightarrow 2 \mathrm{e} \cdot \log _{x} e=e\left(\frac{1}{\log _{x} e}-1\right) \\\Rightarrow 2 \log _{x} e=\left(\frac{1}{\log _{x} e}-1\right) \\Let \log _{x} e=t \\So, \\2 t=\frac{1}{t}-1 \\\Rightarrow 2 t^{2}+t-1=0 \\\Rightarrow 2 t^{2}+2 t-t-1=0 \\\Rightarrow 2 t(t+1)-1(t+1)=0 \\\Rightarrow(2 t-1)(t+1)=0 \\\Rightarrow 2 t-1=0\ or\ t+1=0 \\\Rightarrow t=\frac{1}{2},-1 \\As \log _{x} e=t

We know that,

logxe>0{ \log _{x} e>0}

So,logxe1Now,logxe=12e=x12x=e2Ans:x=e2So, \log _{x} e \neq-1 \\Now, \log _{x} e=\frac{1}{2} \\\Rightarrow e=x^{\frac{1}{2}}\\\Rightarrow x=e^2 \\Ans: x=e^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment