Solve the inequality √(4x2-8x+7) ≤ -2x
4x2−8x+7≤−2x\sqrt{4x^2-8x+7}≤ -2x4x2−8x+7≤−2x
4x2−8x+7≤−2x,x∈R\sqrt{4x2-8x+7} ≤ -2x, x\isin\reals4x2−8x+7≤−2x,x∈R
Separate into two possible case
4x2−8x+7≤−2x,−2x≥0\sqrt{4x^2-8x+7}≤ -2x,-2x≥04x2−8x+7≤−2x,−2x≥0
4x2−8x+7≤−2x,−2x<0\sqrt{4x^2-8x+7}≤ -2x,-2x<04x2−8x+7≤−2x,−2x<0
Solve the inequality for x
x≥78,−2x≥0x≥\frac{7}{8}, -2x≥0x≥87,−2x≥0
Since the left-hand side is always positive or zero, and the right-hand side is always negative, the statement is false for any value of x
x≥78,x≤0x≥\frac{7}{8},x≤0x≥87,x≤0
x∈∅x\isin\varnothingx∈∅ , −2x<0-2x<0−2x<0
x∈∅,x>0x\isin\varnothing,x>0x∈∅,x>0
Find the intersection
x∈∅x\isin\varnothingx∈∅
The union
That is, there is no solution.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments