4 x 2 − 8 x + 7 ≤ − 2 x \sqrt{4x^2-8x+7}\leq-2x 4 x 2 − 8 x + 7 ≤ − 2 x
4 x 2 − 8 x + 7 ≤ − 2 x , x ∈ R \sqrt{4x^2-8x+7} ≤ -2x,
x\isin\reals 4 x 2 − 8 x + 7 ≤ − 2 x , x ∈ R
Separate into two possible case
4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x ≥ 0 \sqrt{4x^2-8x+7}≤ -2x,-2x≥0 4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x ≥ 0
4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x < 0 \sqrt{4x^2-8x+7}≤ -2x,-2x<0 4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x < 0
Solve the inequality for x
x ≥ 7 8 , − 2 x ≥ 0 x≥\frac{7}{8}, -2x≥0 x ≥ 8 7 , − 2 x ≥ 0
4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x < 0 \sqrt{4x^2-8x+7}≤ -2x,-2x<0 4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x < 0
Since the left-hand side is always positive or zero, and the right-hand side is always negative, the statement is false for any value of x
x ≥ 7 8 , x ≤ 0 x≥\frac{7}{8},x≤0 x ≥ 8 7 , x ≤ 0
4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x < 0 \sqrt{4x^2-8x+7}≤ -2x,-2x<0 4 x 2 − 8 x + 7 ≤ − 2 x , − 2 x < 0
x ∈ ∅ x\isin\varnothing x ∈ ∅ , − 2 x < 0 -2x<0 − 2 x < 0
x ∈ ∅ , x > 0 x\isin\varnothing,x>0 x ∈ ∅ , x > 0
Find the intersection
x ∈ ∅ x\isin\varnothing x ∈ ∅
x ∈ ∅ , x > 0 x\isin\varnothing,x>0 x ∈ ∅ , x > 0
The union
x ∈ ∅ x\isin\varnothing x ∈ ∅
That is, there is no solution.
Comments