Solve the inequality √(4x2-8x+7) ≤ -2x
"\\sqrt{4x^2-8x+7}\\leq-2x"
"\\sqrt{4x^2-8x+7} \u2264 -2x,\n x\\isin\\reals"
Separate into two possible case
"\\sqrt{4x^2-8x+7}\u2264 -2x,-2x\u22650"
"\\sqrt{4x^2-8x+7}\u2264 -2x,-2x<0"
Solve the inequality for x
"x\u2265\\frac{7}{8}, -2x\u22650"
"\\sqrt{4x^2-8x+7}\u2264 -2x,-2x<0"
Since the left-hand side is always positive or zero, and the right-hand side is always negative, the statement is false for any value of x
"x\u2265\\frac{7}{8},x\u22640"
"\\sqrt{4x^2-8x+7}\u2264 -2x,-2x<0"
"x\\isin\\varnothing" , "-2x<0"
"x\\isin\\varnothing,x>0"
Find the intersection
"x\\isin\\varnothing"
"x\\isin\\varnothing,x>0"
The union
"x\\isin\\varnothing"
That is, there is no solution.
Comments
Leave a comment