Answer to Question #223279 in Algebra for Gartiffer

Question #223279

GIven that log36=m, and log65=n express log310 in terms of m and n



1
Expert's answer
2021-10-25T03:33:36-0400

GIven, log36log_36=m, and log65log_65 =n.

log36=mlog6log3=m (1)log(2×6)log3=mlog2+log3log3=mlog2log3+log3log3=mlog2log3=m1And,log65=nlog5log6=n (2)By multiple (1) and (2), we getlog6log3log5log6=log5log3=mn (3)Then,log310=log10log3=log(2×5)log3=log2+log5log3=log2log3+log5log3=m1+mn  [from (3)]=m(1+n)nlog_36=m\\ \frac{log6}{log3}=m\space--------(1)\\ \frac{log(2×6)}{log3}=m\\ \frac{log2+log3}{log3}=m\\ \frac{log2}{log3}+\frac{log3}{log3}=m\\ \frac{log2}{log3}=m-1\\ And,\\ log_65=n\\ \frac{log5}{log6}=n\space---------(2)\\ \text{By multiple (1) and (2), we get}\\ \frac{log6}{log3}\frac{log5}{log6}=\frac{log5}{log3}=mn\space ----(3)\\ Then,\\ log_310=\frac{log10}{log3}\\ =\frac{log(2×5)}{log3}\\ =\frac{log2+log5}{log3}\\ =\frac{log2}{log3}+\frac{log5}{log3}\\ =m-1+mn\space \space[from \space(3)]\\ =m(1+n)-n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment