GIven, log36=m, and log65 =n.
log36=mlog3log6=m −−−−−−−−(1)log3log(2×6)=mlog3log2+log3=mlog3log2+log3log3=mlog3log2=m−1And,log65=nlog6log5=n −−−−−−−−−(2)By multiple (1) and (2), we getlog3log6log6log5=log3log5=mn −−−−(3)Then,log310=log3log10=log3log(2×5)=log3log2+log5=log3log2+log3log5=m−1+mn [from (3)]=m(1+n)−n
Comments
Leave a comment