Answer to Question #223089 in Algebra for Sanamtha

Question #223089

Solve the inequality

3x-5/x+2 ≥ x-3




1
Expert's answer
2021-09-02T00:28:36-0400

3x5x+2x33x-\frac{5}x+2 ≥ x-3


Determine the defined range


3x5x+2x3,x03x-\frac{5}x+2 ≥ x-3, x≠0


Move the expression to the left hand side and change its sign


3x5x+2x33x-\frac{5}x+2 ≥ x-3


Calculate


3x5x+5x03x-\frac{5}x+5-x ≥0


Write all numerators above the common denominator


3x25+5xx2x0\frac{3x^2-{5}+5x-x^2 }{x}≥ 0


2x25+5xx0\frac{2x^2-{5}+5x }{x}≥ 0


Separate into possible cases

2x25+5x02x^2-5+5x≥0

x>0x>0


2x25+5x02x^2-5+5x≤0

x<0x<0


Solve the inequality for x


x(,5654)(5+654,+)x\in(-∞, \frac{-5-\sqrt{65}}{4}) ∪ (\frac{-5+\sqrt{65}}{4},+∞)

x>0x>0



x(5654,5+654)x\in(\frac{-5-\sqrt{65}}{4} ,\frac{-5+\sqrt{65}}{4})

x<0x<0


x(5+654,+)x\in(\frac{-5+\sqrt{65}}{4}, +∞)


x(5+654,0)x\in(\frac{-5+\sqrt{65}}{4}, 0)


x(5654,0)(5+654,+),x0x\in(\frac{-5-\sqrt{65}}{4}, 0) ∪ (\frac{-5+\sqrt{65}}{4}, +∞),x≠0


Find the intersection of the solution and the defined range


x(5654,0)(5+654,+)x\in(\frac{-5-\sqrt{65}}{4}, 0) ∪ (\frac{-5+\sqrt{65}}{4}, +∞)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment