3x−x5+2≥x−3
Determine the defined range
3x−x5+2≥x−3,x=0
Move the expression to the left hand side and change its sign
3x−x5+2≥x−3
Calculate
3x−x5+5−x≥0
Write all numerators above the common denominator
x3x2−5+5x−x2≥0
x2x2−5+5x≥0
Separate into possible cases
2x2−5+5x≥0
x>0
2x2−5+5x≤0
x<0
Solve the inequality for x
x∈(−∞,4−5−65)∪(4−5+65,+∞)
x>0
x∈(4−5−65,4−5+65)
x<0
x∈(4−5+65,+∞)
x∈(4−5+65,0)
x∈(4−5−65,0)∪(4−5+65,+∞),x=0
Find the intersection of the solution and the defined range
x∈(4−5−65,0)∪(4−5+65,+∞)
Comments
Leave a comment