Solve the inequality
3x-5/x+2 ≥ x-3
"3x-\\frac{5}x+2 \u2265 x-3"
Determine the defined range
"3x-\\frac{5}x+2 \u2265 x-3, x\u22600"
Move the expression to the left hand side and change its sign
"3x-\\frac{5}x+2 \u2265 x-3"
Calculate
"3x-\\frac{5}x+5-x \u22650"
Write all numerators above the common denominator
"\\frac{3x^2-{5}+5x-x^2 }{x}\u2265 0"
"\\frac{2x^2-{5}+5x }{x}\u2265 0"
Separate into possible cases
"2x^2-5+5x\u22650"
"x>0"
"2x^2-5+5x\u22640"
"x<0"
Solve the inequality for x
"x\\in(-\u221e, \\frac{-5-\\sqrt{65}}{4})\n \u222a\n (\\frac{-5+\\sqrt{65}}{4},+\u221e)"
"x>0"
"x\\in(\\frac{-5-\\sqrt{65}}{4}\n \n ,\\frac{-5+\\sqrt{65}}{4})"
"x<0"
"x\\in(\\frac{-5+\\sqrt{65}}{4},\n+\u221e)"
"x\\in(\\frac{-5+\\sqrt{65}}{4},\n0)"
"x\\in(\\frac{-5-\\sqrt{65}}{4},\n0)\n\u222a\n(\\frac{-5+\\sqrt{65}}{4},\n+\u221e),x\u22600"
Find the intersection of the solution and the defined range
"x\\in(\\frac{-5-\\sqrt{65}}{4},\n0)\n\u222a\n(\\frac{-5+\\sqrt{65}}{4},\n+\u221e)"
Comments
Leave a comment