Question #174392

If a, b, c and d are the roots of the equation

2x⁴-4x³+6x²+10x+12=0.

Find the value of a²+b²+c²+d².


1
Expert's answer
2021-03-31T14:43:34-0400
(a+b+c+d)2(a+b+c+d)^2

=(a+b)2+2(a+b)(c+d)+(c+d)2=(a+b)^2+2(a+b)(c+d)+(c+d)^2

=a2+2ab+b2+2ac+2ad+2bc+2bd=a^2+2ab+b^2+2ac+2ad+2bc+2bd

+c2+2cd+d2+c^2+2cd+d^2

Then


a2+b2+c2+d2a^2+b^2+c^2+d^2

=(a+b+c+d)2=(a+b+c+d)^2

2(ab+ac+ad+bc+bd+cd)-2(ab+ac+ad+bc+bd+cd)

Use Vieta's formulas


a+b+c+d=42=2a+b+c+d=-\dfrac{-4}{2}=2

ab+ac+ad+bc+bd+cd=62=3ab+ac+ad+bc+bd+cd=\dfrac{6}{2}=3

Hence


a2+b2+c2+d2=(2)22(3)=2a^2+b^2+c^2+d^2=(2)^2-2(3)=-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS