Question #173821

For what value(s) of k, if any, will the system have no solution, a unique solution, and infinitely many solutions? (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)


x − 2y + 8z = 6

x + y + z = k

2x − y + 9z = k2

1
Expert's answer
2021-04-19T07:26:37-0400

Consider the system of linear equations

x-2y+8z=6

x +y +z=k

2x-y+9z=k2


The augmented matrix for the above linear system:


A = [1286111k219k2]\begin{bmatrix} 1 & -2 & 8 | & 6 \\ 1 & 1 & 1 | & k \\ 2 & -1& 9 | & k^2 \end{bmatrix}


The row reduction process as follows:


R2    R2R1R_2\implies R_2-R_1


A = [1286037k6219k2]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 2 & -1& 9&| & k^2 \end{bmatrix}


R3    R32R1R_3\implies R_3-2R_1


A = [1286037k6037k212]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 0 & 3& -7&| & k^2-12 \end{bmatrix}


R3    R3R2R_3\implies R_3-R_2


A = [1286037k6000k2k6]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 0 & 0& 0&| & k^2-k-6 \end{bmatrix} ........ (1)


The system has no solution if the the rank of the matrix [128037000]\begin{bmatrix} 1 & -2 & 8 \\ 0 & 3 & -7 \\ 0 & 0& 0 \end{bmatrix} is not equal to rank of matrix [1286037k6000k2k6]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 0 & 0& 0&| & k^2-k-6 \end{bmatrix}


Let k2k60k^2-k-6\ne 0

(k+2)(k3)0(k+2)(k-3)\ne0

k2,3k\ne-2,3

Thus, the rank of matrix [128037000]\begin{bmatrix} 1 & -2 & 8 \\ 0 & 3 & -7 \\ 0 & 0& 0 \end{bmatrix} is 2.


Thus, the rank of matrix [1286037k6000k2k6]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 0 & 0& 0&| & k^2-k-6 \end{bmatrix} is 3.


Hence the system has no solution if k2,3k\ne-2,3

The system has unique solution if the rank of matrix [128037000]\begin{bmatrix} 1 & -2 & 8 \\ 0 & 3 & -7 \\ 0 & 0& 0 \end{bmatrix} is equal to rank of matrix [1286037k6000k2k6]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 0 & 0& 0&| & k^2-k-6 \end{bmatrix} =3=3


This is not possible.

So, the system has no unique solution.


The system has infinitely many solutions if the rank of matrix [128037000]\begin{bmatrix} 1 & -2 & 8 \\ 0 & 3 & -7 \\ 0 & 0& 0 \end{bmatrix} is equal to rank of matrix [1286037k6000k2k6]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 0 & 0& 0&| & k^2-k-6 \end{bmatrix} less than 3.


Let k2k6=0k^2-k-6=0

(k+2)(k3)=0(k+2)(k-3)=0

k=2,3k=-2,3

Thus, the rank of matrix [128037000]\begin{bmatrix} 1 & -2 & 8 \\ 0 & 3 & -7 \\ 0 & 0& 0 \end{bmatrix} is 2.



Thus, the rank of matrix [1286037k6000k2k6]\begin{bmatrix} 1 & -2 & 8&| & 6 \\ 0 & 3 & -7&| & k-6 \\ 0 & 0& 0&| & k^2-k-6 \end{bmatrix} is 2.


Hence, the system has infinitely many solutions if k=2,3k=-2,3 .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS