Answer to Question #173531 in Algebra for Jon jay Mendoza

Question #173531

Show complete solution:

1.f(x)=2 sin (x-​π/​4)

2.f(x)=sin (x+π/​3)

3.f(x)=3 cos (x+π/​6)

4.f(x)=2 cos (x-2π)

5.f(x)=tan x



1
Expert's answer
2021-03-23T06:34:31-0400

 1) f(x)=2sin(xπ4)=0sin(xπ4)=0,y=xπ4siny=0kZy=πkxπ4=πkx=π4+πk\begin{array}{l} \text { 1) } f(x)=2 \sin \left(x-\frac{\pi}{4}\right)=0 \\ \sin \left(x-\frac{\pi}{4}\right)=0, \quad y=x-\frac{\pi}{4} \\ \sin y=0 \\ k \in Z \quad y=\pi k \quad x-\frac{\pi}{4}=\pi k \\ x=\frac{\pi}{4}+\pi k \end{array}


 d) 4)f(x)=2cos(x2π)=0cos(x2π)=0cosy=0y=x2πy=π2+πk,x=π2+2π+πkkzx=5π2+πkx=π2+πk\begin{array}{l} \text { d) } 4) f(x)=2 \cos (x-2 \pi)=0 \\ \cos (x-2 \pi)=0 \\ \cos y=0 \quad y=x-2 \pi \\ y=\frac{\pi}{2}+\pi k, \quad x=\frac{\pi}{2}+2 \pi+\pi k \quad k \in z \\ x=\frac{5 \pi}{2}+\pi k \Rightarrow x=\frac{\pi}{2}+\pi k \end{array}  3) f(x)=3cos(x+π/6)=0cos(x+π/6)=0 Ces y=x+π/6cosy=0y=π2+πkx=π2π6+πkkZx=π3+πk\begin{array}{l} \text { 3) } \begin{aligned} f(x)=3 \cos (x+\pi / 6)=0 \\ \cos (x+\pi / 6)=0 \end{aligned} \\ \text { Ces } \begin{array}{rl} y=x+\pi / 6 \quad \cos y=0 \\ y=\frac{\pi}{2}+\pi k \quad x=\frac{\pi}{2}-\frac{\pi}{6}+\pi k & k \in Z \\ x=\frac{\pi}{3}+\pi k \end{array} \end{array}  5) f(x)=tanx=0x=π2+πkkZ\text { 5) } \begin{aligned} f(x) &=\tan x=0 \\ x &=\frac{\pi}{2}+\pi k \quad k \in Z \end{aligned}  2)f(x)=sin(x+π/3)=0siny=0,y=x+π/3y=10πkx+π/3=πkkZx=π/3+πk\text { 2)} \begin{array}{rl} f(x)=\sin (x+\pi / 3)=0 \\ \sin y=0, & y=x+\pi / 3 \\ y=10 \pi k & x+\pi / 3=\pi k \quad k \in Z \\ x & =-\pi / 3+\pi k \end{array}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment