(-1+i√3)n + (-1-i√3)n
= 2n (2−1+i√3)n + 2n (2−1−i√3)n
= 2n (2−1+2i√3)n + 2n (2−1−2i√3)n
= 2n ( cos 32π+i sin32π )n + 2n ( cos32π−isin32π )n
= 2n ( cos 32nπ+ isin32nπ ) + 2n ( cos32nπ− isin32nπ ) by D'Moivres theorem
= 2n . 2 cos32nπ
= 2n+1 cos32nπ
Now as n is an integer, n can be any one of the forms 3k, 3k+1, 3k+2 where k is an integer.
When n = 3k
cos32nπ = cos32(3k)π = cos 2kπ = 1
So (−1+i√3)n+(−1−i√3)n
= 2n+1
When n = 3k+1
cos32nπ = cos32(3k+1)π = cos(2kπ+32π) = cos32π=cos(π−3π)=−cos3π = −21
So (−1+i√3)n+(−1−i√3)n
= 2n+1(−21)
= −2n
When n = 3k+2
cos32nπ = cos32(3k+2)π = cos(2kπ +34π) = cos34π = cos(π+3π )= -cos3π = −21
So (−1+i√3)n+(−1−i√3)n
= 2n+1(−21)
= −2n
Finally we can conclude that
(−1+i√3)n+(−1−i√3)n
= 2n+1 or − 2n if n is an integer (positive, negative or zero)
Comments