Question #124663
(a) Prove that
(−1 + i

3)n + (−1 − i

3)n
has either the value 2n+1 or the value −2
n
if n is any integer (positive, negative or zero).
1
Expert's answer
2020-07-05T17:35:15-0400

(-1+i√3)n^n + (-1-i√3)n^n

= 2n^n (1+i32)n\frac{-1+i√3}{2})^n + 2n^n (1i32)n\frac{-1-i√3}{2})^n

= 2n2^n (12+i32)n(\frac{-1}{2}+\frac{i√3}{2})^n + 2n2^n (12i32)n(\frac{-1}{2}-\frac{i√3}{2})^n

= 2n2^n ( cos 2π3+i\frac{2π}{3}+i sin2π3\frac{2π}{3} )n^n + 2n^n ( cos2π3i\frac{2π}{3}-isin2π3\frac{2π}{3} )n^n

= 2n2^n ( cos 2nπ3+\frac{2nπ}{3}+ isin2nπ3\frac{2nπ}{3} ) + 2n2^n ( cos2nπ3\frac{2nπ}{3}- isin2nπ3\frac{2nπ}{3} ) by D'Moivres theorem

= 2n2^n . 2 cos2nπ3\frac{2nπ}{3}

= 2n+12^{n+1} cos2nπ3\frac{2nπ}{3}

Now as n is an integer, n can be any one of the forms 3k, 3k+1, 3k+2 where k is an integer.

When n = 3k

cos2nπ3cos \frac{2nπ}{3} = cos2(3k)π3cos \frac{2(3k)π}{3} = cos 2kπ = 1

So (1+i3)n+(1i3)n(-1+i√3)^n+(-1-i√3)^n

= 2n+1^{n+1}

When n = 3k+1

cos2nπ3cos \frac{2nπ}{3} = cos2(3k+1)π3cos \frac{2(3k+1)π}{3} = cos(2kπ+2π3)\frac{2π}{3}) = cos2π3=cos(ππ3)=cosπ3\frac{2π}{3} = cos(π-\frac{π}{3})= -cos\frac{π}{3} = 12-\frac{1}{2}

So (1+i3)n+(1i3)n(-1+i√3)^n+(-1-i√3)^n

= 2n+1(12)^{n+1}(-\frac{1}{2})

= 2n-2^n

When n = 3k+2

cos2nπ3cos \frac{2nπ}{3} = cos2(3k+2)π3cos \frac{2(3k+2)π}{3} = cos(2kπ +4π3)\frac{4π}{3}) = cos4π3\frac{4π}{3} = cos(π+π3\frac{π}{3} )= -cosπ3\frac{π}{3} = 12-\frac{1}{2}

So (1+i3)n+(1i3)n(-1+i√3)^n+(-1-i√3)^n

= 2n+1(12)2^{n+1}(-\frac{1}{2})

= 2n-2^n

Finally we can conclude that

(1+i3)n+(1i3)n(-1+i√3)^n+(-1-i√3)^n

= 2n+1^{n+1} or - 2n^{n} if n is an integer (positive, negative or zero)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS