(-1+i√3)"^n" + (-1-i√3)"^n"
= 2"^n" ("\\frac{-1+i\u221a3}{2})^n" + 2"^n" ("\\frac{-1-i\u221a3}{2})^n"
= "2^n" "(\\frac{-1}{2}+\\frac{i\u221a3}{2})^n" + "2^n" "(\\frac{-1}{2}-\\frac{i\u221a3}{2})^n"
= "2^n" ( cos "\\frac{2\u03c0}{3}+i" sin"\\frac{2\u03c0}{3}" )"^n" + 2"^n" ( cos"\\frac{2\u03c0}{3}-i"sin"\\frac{2\u03c0}{3}" )"^n"
= "2^n" ( cos "\\frac{2n\u03c0}{3}+" isin"\\frac{2n\u03c0}{3}" ) + "2^n" ( cos"\\frac{2n\u03c0}{3}-" isin"\\frac{2n\u03c0}{3}" ) by D'Moivres theorem
= "2^n" . 2 cos"\\frac{2n\u03c0}{3}"
= "2^{n+1}" cos"\\frac{2n\u03c0}{3}"
Now as n is an integer, n can be any one of the forms 3k, 3k+1, 3k+2 where k is an integer.
When n = 3k
"cos \\frac{2n\u03c0}{3}" = "cos \\frac{2(3k)\u03c0}{3}" = cos 2kπ = 1
So "(-1+i\u221a3)^n+(-1-i\u221a3)^n"
= 2"^{n+1}"
When n = 3k+1
"cos \\frac{2n\u03c0}{3}" = "cos \\frac{2(3k+1)\u03c0}{3}" = cos(2kπ+"\\frac{2\u03c0}{3})" = cos"\\frac{2\u03c0}{3} = cos(\u03c0-\\frac{\u03c0}{3})= -cos\\frac{\u03c0}{3}" = "-\\frac{1}{2}"
So "(-1+i\u221a3)^n+(-1-i\u221a3)^n"
= 2"^{n+1}(-\\frac{1}{2})"
= "-2^n"
When n = 3k+2
"cos \\frac{2n\u03c0}{3}" = "cos \\frac{2(3k+2)\u03c0}{3}" = cos(2kπ +"\\frac{4\u03c0}{3})" = cos"\\frac{4\u03c0}{3}" = cos(π+"\\frac{\u03c0}{3}" )= -cos"\\frac{\u03c0}{3}" = "-\\frac{1}{2}"
So "(-1+i\u221a3)^n+(-1-i\u221a3)^n"
= "2^{n+1}(-\\frac{1}{2})"
= "-2^n"
Finally we can conclude that
"(-1+i\u221a3)^n+(-1-i\u221a3)^n"
= 2"^{n+1}" or "-" 2"^{n}" if n is an integer (positive, negative or zero)
Comments
Leave a comment