z=a+bi
can write a=Re(z)
if z+z=2Re(z) z=a b=0
∣ z∣2 =a2
z1= a1 z2=a2
z1+z2= a1+a2
∣z1+z2 ∣2=a12+a22+2a1* a2
∣ z1∣ =a1
∣z2∣ =a2
Re(a1a2) =a1a2
∣ z1+z2∣2 =∣z1∣2 +∣ z2∣ 2+2Re(a1a2)
property of the modulus and argument of a complex number
|z1|−|z2|≤|z1+z2|≤|z1|+|z2|
(b)
(i) z1=1+2i let be z2=a+bi
∣ z1+z2∣ =((1+a)2+(2+b)2)1/2
∣ z1∣ =(12+22)1/2=51/2
∣ z2∣ =(a2+b2)1/2
((1+a)2 +(2+b)2)1/2=5 1/2+(a2+b2)1/2
square everything
1+2a+a2+4+4b+b2=5+2(5)1/2(a2+b2)1/2+a2+b2
a+2b=51/2(a2+b2)1/2
square everything
a2+4ab+4b2=5(a2+b2)
4a2-4ab+b2=0
2a=b where both numbers are positive
(ii)((1+a)2+(2+b)2)1/2=51/2-(a2+b2)1/2
1+2a+a2+4+4b+b2=5-2(5)1/2(a2+b2)1/2+a2+b2
2a=b
where both numbers are negative
Comments
Leave a comment