4.(a) Prove that
(−1 + i√3)^n + (−1 − i√3)^n
has either the value 2^n+1 or the value −2^n. if n is any integer (positive, negative or zero).
(b) The complex numbers z1 and z2 are connected by the relation
z1 = z2 +1/z2
If the point representing z2 in the Argand diagram describes a circle of radius a and centre at the origin, show that the point representing z1 describes the ellipse
x^2/(1 + a^2)^2 + y^2/(1 − a^2)^2=1/a^2.
1
Expert's answer
2020-07-05T17:53:53-0400
ANSWER
(a)
Let z=(−1+i3) , then ∣z∣=1+3=2,φ=arg(z)=32π,z=−1−i3
Angle φ is in quadrant II. If n is any integer, then by the formula of De Moivre, we get (−1+i3)n+(−1−i3)n=2n(cos32nπ+isin32nπ+cos32nπ−isin32nπ)==2n+1cos32nπ=⎩⎨⎧−2n,n=3k−2−2n,n=3k−12n+1,n=3k , because cos32(3k−2)π=cos(2kπ−34π)=cos(π+3π)=−cos3π=−21 ,cos32(3k−1)π=cos(2kπ−32π)=cos(π−3π)=−cos3π=−21 . So, (−1+i3)n+(−1−i3)n has either the value 2n+1 or the value −2n . if n is any
integer.
(b)If the point representing z2 in the Argand diagram describes a circle of radius a and centre at the origin, then z2⋅z2=∣z2∣2=a2 , z2=a(cost+isint),z2=a(cost−isint),z2++a2z2=a(cost+isint)++a(cost−isint) Let z1=x+iy=z2+a2z2 , then x(t)=acost+acost,y(t)=asint−asint .
x2(t)=(a+a1)2cos2t=a2(a2+1)2cos2t,y2(t)=(a−a1)2sin2t=a2(a2−1)2sin2t . So, (a2+1)2x2(t)=a2cos2t,(a2−1)2y2(t)=a2sin2t . Adding the last two equalities , we obtain , that the point representing z1 describes the ellipse (a2+1)2x2+(1−a2)2y2=a21
Comments