ANSWER
(a)
Let "z=(-1+i\\sqrt { 3\\ })" , then "|z|=\\sqrt { 1+3 } =2,\\quad \\varphi =arg(z)=\\frac { 2\\pi }{ 3 } ,\\quad \\overline { z } =-1-i\\sqrt { 3 }"
Angle "\u03c6" is in quadrant II. If "n" is any integer, then by the formula of De Moivre, we get "{ (-1+i\\sqrt { 3 } ) }^{ n }+{ (-1-i\\sqrt { 3 } ) }^{ n }={ 2 }^{ n }{ \\left( \\cos { \\frac { 2n\\pi }{ 3 } \\ } +i\\sin { \\frac { 2n\\pi }{ 3 } +\\cos { \\frac { 2n\\pi }{ 3 } } -i\\sin { \\frac { 2n\\pi }{ 3 } \\quad } } \\right) = }" "={ 2 }^{ n+1 }\\cos { \\frac { 2n\\pi }{ 3 } } =\\begin{cases} { -2 }^{ n },\\quad n=3k-2 \\\\ -{ 2 }^{ n },\\quad n=3k-1\\quad \\\\ { 2 }^{ n+1 },\\quad n=3k \\end{cases}" , because "\\cos { \\frac { 2(3k-2)\\pi }{ 3 } } =\\cos { \\left( 2k\\pi -\\frac { 4\\pi }{ 3 } \\right) = } \\cos { \\left( \\pi +\\frac { \\pi }{ 3 } \\right) } =-\\cos { \\frac { \\pi }{ 3 } =-\\frac { 1 }{ 2 } }" ,"\\cos { \\frac { 2(3k-1)\\pi }{ 3 } } =\\cos { \\left( 2k\\pi -\\frac { 2\\pi }{ 3 } \\right) = } \\cos { \\left( \\pi -\\frac { \\pi }{ 3 } \\right) } =-\\cos { \\frac { \\pi }{ 3 } =-\\frac { 1 }{ 2 } }" . So, "{ (-1+i\\sqrt { 3 } ) }^{ n }+{ (-1-i\\sqrt { 3 } ) }^{ n }" has either the value "{ 2 }^{ n+1 }" or the value "-2^n" . if n is any
integer.
(b)If the point representing "z_2" in the Argand diagram describes a circle of radius a and centre at the origin, then "{ z }_{ 2 }\\cdot \\overline { { z }_{ 2 } } =\\ { |{ z }_{ 2 }| }^{ 2 }={ a }^{ 2 }" , "{ z }_{ 2 }=a(\\cos { t+i\\sin { t } } ),\\ \\overline { { z }_{ 2 } } \\ =a(\\cos { t } \\ -i\\sin { t } )\\ ,\\quad { z }_{ 2 }++\\frac { \\overline { { z }_{ 2 } } }{ { a }^{ 2\\quad } } =a(\\cos { t+i\\sin { t } } )++\\frac { \\quad (\\cos { t } \\ -i\\sin { t } ) }{ a }" Let "{ z }_{ 1 }=x+iy={ z }_{ 2 }+\\frac { \\overline { { z }_{ 2 } } }{ { a }^{ 2\\ } }" , then "x(t)=a\\cos { t } +\\frac { \\cos { t }}{ a } ,\\quad y(t)=a\\sin { t-\\frac { \\sin { t } }{ a } }" .
"{ x }^{ 2 }(t)={ \\left( a+\\frac { 1 }{ a } \\right) }^{ 2 }\\cos ^{ 2 }{ t } =\\frac { { \\left( { a }^{ 2 }+1 \\right) }^{ 2 }\\cos ^{ 2 }{ t } }{ { a }^{ 2 } } ,\\quad { y }^{ 2 }(t)={ \\left( a-\\frac { 1 }{ a } \\right) }^{ 2 }\\sin ^{ 2 }{ t= } \\frac { { \\left( { a }^{ 2 }-1 \\right) }^{ 2 }\\sin ^{ 2 }{ t } }{ { a }^{ 2 } }" . So, "\\frac { { x }^{ 2 }(t) }{ { \\left( { a }^{ 2 }+1 \\right) }^{ 2 } } =\\frac { \\cos ^{ 2 }{ t } }{ { a }^{ 2 } } ,\\quad \\frac { { y }^{ 2 }(t) }{ { \\left( { a }^{ 2 }-1 \\right) }^{ 2 } } =\\frac { \\sin ^{ 2 }{ t } }{ { a }^{ 2 } }" . Adding the last two equalities , we obtain , that the point representing "z_1" describes the ellipse "\\frac { { x }^{ 2 }\\quad }{ { \\left( { a }^{ 2 }+1 \\right) }^{ 2 } } +\\frac { { y }^{ 2 }\\quad }{ { \\left( { 1-a }^{ 2 }\\quad \\right) }^{ 2 } } =\\frac { 1 }{ { a }^{ 2 } }"
Comments
Leave a comment