Question #124551
4.(a) Prove that
(−1 + i√3)^n + (−1 − i√3)^n
has either the value 2^n+1 or the value −2^n. if n is any integer (positive, negative or zero).

(b) The complex numbers z1 and z2 are connected by the relation
z1 = z2 +1/z2

If the point representing z2 in the Argand diagram describes a circle of radius a and centre at the origin, show that the point representing z1 describes the ellipse
x^2/(1 + a^2)^2 + y^2/(1 − a^2)^2=1/a^2.
1
Expert's answer
2020-07-05T17:53:53-0400

ANSWER

(a)

Let z=(1+i3 )z=(-1+i\sqrt { 3\ }) , then z=1+3=2,φ=arg(z)=2π3,z=1i3|z|=\sqrt { 1+3 } =2,\quad \varphi =arg(z)=\frac { 2\pi }{ 3 } ,\quad \overline { z } =-1-i\sqrt { 3 }

Angle φφ is in quadrant II. If nn is any integer, then by the formula of De Moivre, we get (1+i3)n+(1i3)n=2n(cos2nπ3 +isin2nπ3+cos2nπ3isin2nπ3)={ (-1+i\sqrt { 3 } ) }^{ n }+{ (-1-i\sqrt { 3 } ) }^{ n }={ 2 }^{ n }{ \left( \cos { \frac { 2n\pi }{ 3 } \ } +i\sin { \frac { 2n\pi }{ 3 } +\cos { \frac { 2n\pi }{ 3 } } -i\sin { \frac { 2n\pi }{ 3 } \quad } } \right) = } =2n+1cos2nπ3={2n,n=3k22n,n=3k12n+1,n=3k={ 2 }^{ n+1 }\cos { \frac { 2n\pi }{ 3 } } =\begin{cases} { -2 }^{ n },\quad n=3k-2 \\ -{ 2 }^{ n },\quad n=3k-1\quad \\ { 2 }^{ n+1 },\quad n=3k \end{cases} , because cos2(3k2)π3=cos(2kπ4π3)=cos(π+π3)=cosπ3=12\cos { \frac { 2(3k-2)\pi }{ 3 } } =\cos { \left( 2k\pi -\frac { 4\pi }{ 3 } \right) = } \cos { \left( \pi +\frac { \pi }{ 3 } \right) } =-\cos { \frac { \pi }{ 3 } =-\frac { 1 }{ 2 } } ,cos2(3k1)π3=cos(2kπ2π3)=cos(ππ3)=cosπ3=12\cos { \frac { 2(3k-1)\pi }{ 3 } } =\cos { \left( 2k\pi -\frac { 2\pi }{ 3 } \right) = } \cos { \left( \pi -\frac { \pi }{ 3 } \right) } =-\cos { \frac { \pi }{ 3 } =-\frac { 1 }{ 2 } } . So, (1+i3)n+(1i3)n{ (-1+i\sqrt { 3 } ) }^{ n }+{ (-1-i\sqrt { 3 } ) }^{ n } has either the value 2n+1{ 2 }^{ n+1 } or the value 2n-2^n . if n is any

integer.

(b)If the point representing z2z_2 in the Argand diagram describes a circle of radius a and centre at the origin, then z2z2= z22=a2{ z }_{ 2 }\cdot \overline { { z }_{ 2 } } =\ { |{ z }_{ 2 }| }^{ 2 }={ a }^{ 2 } , z2=a(cost+isint), z2 =a(cost isint) ,z2++z2a2=a(cost+isint)++(cost isint)a{ z }_{ 2 }=a(\cos { t+i\sin { t } } ),\ \overline { { z }_{ 2 } } \ =a(\cos { t } \ -i\sin { t } )\ ,\quad { z }_{ 2 }++\frac { \overline { { z }_{ 2 } } }{ { a }^{ 2\quad } } =a(\cos { t+i\sin { t } } )++\frac { \quad (\cos { t } \ -i\sin { t } ) }{ a } Let z1=x+iy=z2+z2a2 { z }_{ 1 }=x+iy={ z }_{ 2 }+\frac { \overline { { z }_{ 2 } } }{ { a }^{ 2\ } } , then x(t)=acost+costa,y(t)=asintsintax(t)=a\cos { t } +\frac { \cos { t }}{ a } ,\quad y(t)=a\sin { t-\frac { \sin { t } }{ a } } .

x2(t)=(a+1a)2cos2t=(a2+1)2cos2ta2,y2(t)=(a1a)2sin2t=(a21)2sin2ta2{ x }^{ 2 }(t)={ \left( a+\frac { 1 }{ a } \right) }^{ 2 }\cos ^{ 2 }{ t } =\frac { { \left( { a }^{ 2 }+1 \right) }^{ 2 }\cos ^{ 2 }{ t } }{ { a }^{ 2 } } ,\quad { y }^{ 2 }(t)={ \left( a-\frac { 1 }{ a } \right) }^{ 2 }\sin ^{ 2 }{ t= } \frac { { \left( { a }^{ 2 }-1 \right) }^{ 2 }\sin ^{ 2 }{ t } }{ { a }^{ 2 } } . So, x2(t)(a2+1)2=cos2ta2,y2(t)(a21)2=sin2ta2\frac { { x }^{ 2 }(t) }{ { \left( { a }^{ 2 }+1 \right) }^{ 2 } } =\frac { \cos ^{ 2 }{ t } }{ { a }^{ 2 } } ,\quad \frac { { y }^{ 2 }(t) }{ { \left( { a }^{ 2 }-1 \right) }^{ 2 } } =\frac { \sin ^{ 2 }{ t } }{ { a }^{ 2 } } . Adding the last two equalities , we obtain , that the point representing z1z_1 describes the ellipse x2(a2+1)2+y2(1a2)2=1a2\frac { { x }^{ 2 }\quad }{ { \left( { a }^{ 2 }+1 \right) }^{ 2 } } +\frac { { y }^{ 2 }\quad }{ { \left( { 1-a }^{ 2 }\quad \right) }^{ 2 } } =\frac { 1 }{ { a }^{ 2 } }


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS