Question #124560
Prove that
(−1 + i√3)^n + (−1−i√3)^n has either the value 2^(n+1) or the value −2^n if n is any integer (positive, negative or zero).
1
Expert's answer
2020-07-01T18:59:01-0400

Given question is


(1+i3)n+(1i3)nor,(2(1+i3)2)n+(2(1i3)2)nor,2n(12+i32)n+2n(12i32)nor,2n(cos2π3+i sin2π3)n+2n(cos2π3i sin2π3)nNow using DeMoivres Theorem which says that(cosθ+i sinθ)n=(cosnθ+i sinnθ) ,nI(-1+i\sqrt3)^n + (-1-i\sqrt3)^n\\or,\bigg(\frac{2(-1+i\sqrt3)}{2}\bigg)^n + \bigg(\frac{2(-1-i\sqrt3)}{2}\bigg)^n\\or, 2^n\bigg(\frac{-1}{2} + i\frac{\sqrt3}{2}\bigg)^n + 2^n\bigg(\frac{-1}{2} - i\frac{\sqrt3}{2}\bigg)^n\\or, 2^n\bigg(cos\frac{2\pi}{3} + i \space sin\frac{2\pi}{3}\bigg)^n + 2^n\bigg(cos\frac{2\pi}{3} - i \space sin\frac{2\pi}{3}\bigg)^n\\ Now \space using \space DeMoivre's \space Theorem \space which \space says \space that \\(cos\theta +i \space sin\theta)^n = (cosn\theta + i \space sin n \theta) \space , n\in I


or,2n(cos2nπ3+i sin2nπ3)+2n(cos2nπ3i sin2nπ3)or,2n(cos2nπ3+i sin2nπ3+cos2nπ3i sin2nπ3)or,2n(2cos2nπ3)or,2n+1cos2nπ3or, 2^n\bigg(cos\frac{2n\pi}{3}+i\space sin\frac{2n\pi}{3}\bigg)+ 2^n\bigg(cos\frac{2n\pi}{3}-i\space sin\frac{2n\pi}{3}\bigg)\\or, 2^n\bigg(cos\frac{2n\pi}{3}+i\space sin\frac{2n\pi}{3}+ cos\frac{2n\pi}{3}-i\space sin\frac{2n\pi}{3}\bigg)\\or, 2^n \bigg(2cos \frac{2n\pi}{3}\bigg)\\or, 2^{n+1}cos\frac{2n\pi}{3}


Noe there are two cases:

Case 1: when n is a multiple of 3 (whether odd integer (like 3,9,15...) or even integer (like 6,12,18....)

Case 2: when n is not a multiple of 3 (like 1,2,4,5,7,.....)


Case 1: When n is a multiple of 3 as discussed above ..in this case the value of cos2nπ3cos\frac{2n\pi}{3} is always 1.

so 2n+1cos2nπ3=2n+11=2n+1.(Proved)so \space 2^{n+1}cos\frac{2n\pi}{3}= 2^{n+1}*1 = 2^{n+1}. (Proved)


Case 2: When n is not a multiple of 3..in this case for all those values of n whether positive or negative cos2nπ3cos\frac{2n\pi}{3} will always lies either in 2nd quadrant or in 3rd quadrant and in these two quadrants cosine is negative and value of cos2nπ3cos\frac{2n\pi}{3} is always 12-\frac{1}{2} .


Moreover in case of negative integers there will be no effect as cosine absorbs negative sign.


so 2n+1cos2nπ3=2n+1(12)so \space 2^{n+1}*cos\frac{2n\pi}{3}=2^{n+1}*(-\frac{1}{2})

=2(n+11)= -2^{(n+1-1)}

=2n(Proved).= -2^n (Proved).












Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS