ANSWER
(a) Let z = ( − 1 + i 3 ) ∣ z ∣ = 1 + 3 = 2 , φ = a r g z = 2 π 3 z=(-1+i\sqrt { 3\ } )\quad |z|=\sqrt { 1+3 } =2,\quad \varphi =argz=\frac { 2\pi }{ 3 } z = ( − 1 + i 3 ) ∣ z ∣ = 1 + 3 = 2 , φ = a r g z = 3 2 π , z ‾ = − 1 − i 3 \overline { z } =-1-i\sqrt { 3 } z = − 1 − i 3 .
Therefore : z = 2 ( cos 2 π 3 + i sin 2 π 3 ) , z ‾ = 2 ( cos 2 π 3 − i sin 2 π 3 ) z=2\left( \cos { \frac { 2\pi }{ 3 } } +i\sin { \frac { 2\pi }{ 3 } } \right) , \overline { z } =2\left( \cos { \frac { 2\pi }{ 3 } } -i\sin { \frac { 2\pi }{ 3 } } \right) z = 2 ( cos 3 2 π + i sin 3 2 π ) , z = 2 ( cos 3 2 π − i sin 3 2 π ) . By the Moivre's formula, we have ( − 1 + i 3 ) n + ( − 1 − i 3 ) n = 2 n ( cos 2 n π 3 + i sin 2 n π 3 + cos 2 n π 3 − i sin 2 n π 3 ) = { (-1+i\sqrt { 3 } ) }^{ n }+{ (-1-i\sqrt { 3 } ) }^{ n }={ 2 }^{ n }{ \left( \cos { \frac { 2n\pi }{ 3 } \quad } +i\sin { \frac { 2n\pi }{ 3 } +\cos { \frac { 2n\pi }{ 3 } } -i\sin { \frac { 2n\pi }{ 3 } \quad } } \right) = } ( − 1 + i 3 ) n + ( − 1 − i 3 ) n = 2 n ( cos 3 2 nπ + i sin 3 2 nπ + cos 3 2 nπ − i sin 3 2 nπ ) = = 2 n + 1 cos 2 n π 3 = { − 2 n , i f n = 3 k − 2 − 2 n , i f n = 3 k − 1 2 n + 1 , i f n = 3 k ={ 2 }^{ n+1 }\cos { \frac { 2n\pi }{ 3 } } =\begin{cases} -{ 2 }^{ n },if\quad n=3k-2 \\ -{ 2 }^{ n },if\quad n=3k-1\quad \\ { 2 }^{ n+1 },if\quad n=3k \end{cases} = 2 n + 1 cos 3 2 nπ = ⎩ ⎨ ⎧ − 2 n , i f n = 3 k − 2 − 2 n , i f n = 3 k − 1 2 n + 1 , i f n = 3 k , because cos 2 ( 3 k − 2 ) π 3 = cos ( 2 k π − 4 π 3 ) = cos ( π + π 3 ) = − cos π 3 = − 1 2 \cos { \frac { 2(3k-2)\pi }{ 3 } } =\cos { \left( 2k\pi -\frac { 4\pi }{ 3 } \right) = } \cos { \left( \pi +\frac { \pi }{ 3 } \right) } =-\cos { \frac { \pi }{ 3 } =-\frac { 1 }{ 2 } } cos 3 2 ( 3 k − 2 ) π = cos ( 2 kπ − 3 4 π ) = cos ( π + 3 π ) = − cos 3 π = − 2 1 , cos 2 ( 3 k − 1 ) π 3 = cos ( 2 k π − 2 π 3 ) = cos ( π − π 3 ) = − cos π 3 = − 1 2 \cos { \frac { 2(3k-1)\pi }{ 3 } } =\cos { \left( 2k\pi -\frac { 2\pi }{ 3 } \right) = } \cos { \left( \pi -\frac { \pi }{ 3 } \right) } =-\cos { \frac { \pi }{ 3 } =-\frac { 1 }{ 2 } } \\ cos 3 2 ( 3 k − 1 ) π = cos ( 2 kπ − 3 2 π ) = cos ( π − 3 π ) = − cos 3 π = − 2 1 .
So, ( − 1 + i 3 ) n + ( − 1 − i 3 ) n { (-1+i\sqrt { 3 } ) }^{ n }+{ (-1-i\sqrt { 3 } ) }^{ n } ( − 1 + i 3 ) n + ( − 1 − i 3 ) n =2 n + 1 2^{n+1} 2 n + 1 or − 2 n -2^n − 2 n if n n n is any integer.
(b) z 2 = a ( cos t + i sin t ) z 2 ‾ = a ( cos t − i sin t ) { z }_{ 2 }=a(\cos { t+i\sin { t } } )\quad \overline { { z }_{ 2 } } \ =a(\cos { t } \ -i\sin { t } )\quad z 2 = a ( cos t + i sin t ) z 2 = a ( cos t − i sin t ) , z 2 ⋅ z 2 ‾ = ∣ z 2 ∣ 2 = a 2 { z }_{ 2 }\cdot \overline { { z }_{ 2 } } =\ { |{ z }_{ 2 }| }^{ 2 }={ a }^{ 2 } z 2 ⋅ z 2 = ∣ z 2 ∣ 2 = a 2
z 1 = x + i y = z 2 + z 2 ‾ a 2 = a ( cos t + i sin t ) + ( cos t − i sin t ) a { z }_{ 1 }=x+iy={ z }_{ 2 }+\frac { \overline { { z }_{ 2 } } }{ { a }^{ 2\ } }=a(\cos { t+i\sin { t } } )+\frac { \ (\cos { t } \ -i\sin { t } ) }{ a } z 1 = x + i y = z 2 + a 2 z 2 = a ( cos t + i sin t ) + a ( c o s t − i s i n t ) Therefore , x ( t ) = a cos t + c o s t a , y ( t ) = a sin t − sin t a x(t)=a\cos { t } +\frac { cos\quad t }{ a } ,\quad y(t)=a\sin { t-\frac { \sin { t } }{ a } } x ( t ) = a cos t + a cos t , y ( t ) = a sin t − a s i n t and x 2 ( t ) = ( a + 1 a ) 2 cos 2 t = ( a 2 + 1 ) 2 cos 2 t a 2 { x }^{ 2 }(t)={ \left( a+\frac { 1 }{ a } \right) }^{ 2 }\cos ^{ 2 }{ t } =\frac { { \left( { a }^{ 2 }+1 \right) }^{ 2 }\cos ^{ 2 }{ t } }{ { a }^{ 2 } } x 2 ( t ) = ( a + a 1 ) 2 cos 2 t = a 2 ( a 2 + 1 ) 2 c o s 2 t ,y 2 ( t ) = ( a − 1 a ) 2 sin 2 t = ( a 2 − 1 ) 2 sin 2 t a 2 { y }^{ 2 }(t)={ \left( a-\frac { 1 }{ a } \right) }^{ 2 }\sin ^{ 2 }{ t= } \frac { { \left( { a }^{ 2 }-1 \right) }^{ 2 }\sin ^{ 2 }{ t } }{ { a }^{ 2 } } y 2 ( t ) = ( a − a 1 ) 2 sin 2 t = a 2 ( a 2 − 1 ) 2 s i n 2 t .
So,x 2 ( t ) ( a 2 + 1 ) 2 = cos 2 t a 2 , y 2 ( t ) ( a 2 − 1 ) 2 = sin 2 t a 2 \frac { { x }^{ 2 }(t) }{ { \left( { a }^{ 2 }+1 \right) }^{ 2 } } =\frac { \cos ^{ 2 }{ t } }{ { a }^{ 2 } } ,\quad \frac { { y }^{ 2 }(t) }{ { \left( { a }^{ 2 }-1 \right) }^{ 2 } } =\frac { \sin ^{ 2 }{ t } }{ { a }^{ 2 } } ( a 2 + 1 ) 2 x 2 ( t ) = a 2 c o s 2 t , ( a 2 − 1 ) 2 y 2 ( t ) = a 2 s i n 2 t and the point representing z 1 z_1 z 1 describes the ellipse
x 2 ( a 2 + 1 ) 2 + y 2 ( 1 − a 2 ) 2 = 1 a 2 \frac { { x }^{ 2 }\quad }{ { \left( { a }^{ 2 }+1 \right) }^{ 2 } } +\frac { { y }^{ 2 }\quad }{ { \left( { 1-a }^{ 2 }\ \right) }^{ 2 } } =\frac { 1 }{ { a }^{ 2 } } \quad ( a 2 + 1 ) 2 x 2 + ( 1 − a 2 ) 2 y 2 = a 2 1
Comments