Solution.
"P=\\begin{pmatrix} 28& 35& 28 &36& 37& 34 &45 \\\\ 36& 37 &47 &32 &36& 38 &47\\\\ 41& 42 &40& 35& 51& 56& 61\\\\ 30& 33 &39& 33& 78& 76 &83 \\end{pmatrix}; \nA=\\begin{pmatrix} 1 \\\\ 1\\\\ 1\\\\ 1\\\\1\\\\1\\\\1 \\end{pmatrix};"
The product of matrices:
"PA=\\begin{pmatrix} 28& 35& 28 &36& 37& 34 &45 \\\\ 36& 37 &47 &32 &36& 38 &47\\\\ 41& 42 &40& 35& 51& 56& 61\\\\ 30& 33 &39& 33& 78& 76 &83 \\end{pmatrix}\\begin{pmatrix} 1 \\\\ 1\\\\ 1\\\\1\\\\1\\\\1\\\\ 1 \\end{pmatrix}="
"=\\begin{pmatrix} 243 \\\\ 273\\\\ 326\\\\ 372 \\end{pmatrix}," where
"A_{\n1,1}\n\u200b\n\n=28\u22c51+35\u22c51+28\u22c51+36\u22c51+37\u22c51+34\u22c51+45\u22c51=243;"
"A_{2,1}\u200b=36\u22c51+37\u22c51+47\u22c51+32\u22c51+36\u22c51+38\u22c51+47\u22c51=273;"
"A_{3,1}=41\u22c51+42\u22c51+40\u22c51+35\u22c51+51\u22c51+56\u22c51+61\u22c51=326;"
"A_{4,1}=30\u22c51+33\u22c51+39\u22c51+33\u22c51+78\u22c51+76\u22c51+83\u22c51=372;"
"B=\\begin{pmatrix} 1& 1& 1 &1& \\end{pmatrix};"
"BP=\\begin{pmatrix} 1& 1& 1 &1& \\end{pmatrix}\\begin{pmatrix} 28& 35& 28 &36& 37& 34 &45 \\\\ 36& 37 &47 &32 &36& 38 &47\\\\ 41& 42 &40& 35& 51& 56& 61\\\\ 30& 33 &39& 33& 78& 76 &83 \\end{pmatrix}=" "=\\begin{pmatrix} 135&147 & 154&136&202&204& 236 \\end{pmatrix}," where
"A_{1,1}=1\\sdot28+1\\sdot36+1\\sdot41+1\\sdot30=135;"
"A_{1,2}=1\\sdot35+1\\sdot37+1\\sdot42+1\\sdot33=147;"
"A_{1,3}=1\\sdot28+1\\sdot47+1\\sdot40+1\\sdot39=154;"
"A_{1,4}=1\\sdot36+1\\sdot32+1\\sdot35+1\\sdot33=136;"
"A_{1,5}=1\\sdot37+1\\sdot36+1\\sdot51+1\\sdot78=202;"
"A_{1,6}=1\\sdot34+1\\sdot38+1\\sdot56+1\\sdot76=204;"
"A_{1,7}=1\\sdot45+1\\sdot47+1\\sdot61+1\\sdot83=236;"
Answer: "PA=\\begin{pmatrix} 243 \\\\ 273\\\\ 326\\\\ 372 \\end{pmatrix};"
"BP=\\begin{pmatrix} 135&147 & 154&136&202&204& 236 \\end{pmatrix}."
Comments
Leave a comment