Question #117769
Given that z=1+i√z ,express in the form a+ib each of the complex numbers p=z+1/z ,q=z-1/z . In an Argand diagram ,P and Q are the points which represent p and q respectively . O is the origin , M is the midpoint of PQ and G is the point on OM such that OG=two-thirds of OM . Prove that angle PGQ is a right angle . Please I need the answers as soon as possible . Thanks
1
Expert's answer
2020-05-25T13:46:46-0400

Given, z = 1 + i2\sqrt{\smash[b]{2}}


p = z + 1/z

p = 1 + i2\sqrt{\smash[b]{2}} + 1/(1 + i2\sqrt{\smash[b]{2}} )

p = 1 + i2\sqrt{\smash[b]{2}} + (1 - i2\sqrt{\smash[b]{2}} )/((1 + i2\sqrt{\smash[b]{2}} ) × (1 - i2\sqrt{\smash[b]{2}} ))

p = 1 + i2\sqrt{\smash[b]{2}} + (1 - i2\sqrt{\smash[b]{2}} )/(1² - (i2\sqrt{\smash[b]{2}} )²)

p = 1 + i2\sqrt{\smash[b]{2}} + (1 - i2\sqrt{\smash[b]{2}} ​ )/(1 + 2)

p = 1 + i2\sqrt{\smash[b]{2}} ​ + (1 - i2\sqrt{\smash[b]{2}} ​ )/3

p = (1 + 1/3) + i(2\sqrt{\smash[b]{2}} - (2\sqrt{\smash[b]{2}} ​/3))


Therefore, p = (4/3) + i(22\sqrt{\smash[b]{2}}/3), where a = (4/3) and b = (22\sqrt{\smash[b]{2}}​/3).


q = z - 1/z

q = 1 + i2\sqrt{\smash[b]{2}} ​ - (1/(1 + i2\sqrt{\smash[b]{2}} ​ ))

q = 1 + i2\sqrt{\smash[b]{2}} ​ - ((1 - i2\sqrt{\smash[b]{2}} ​ )/(1 + i2\sqrt{\smash[b]{2}} )(1 - i2\sqrt{\smash[b]{2}} ​ ))

q = 1 + i2\sqrt{\smash[b]{2}} ​ - (1 - i2\sqrt{\smash[b]{2}} ​ )/3

q = (1 - (1/3)) + i(2\sqrt{\smash[b]{2}} ​ + (2\sqrt{\smash[b]{2}} ​/3))


Therefore, q = (2/3) + i(42\sqrt{\smash[b]{2}} ​/3), where a = (2/3) and b = (42\sqrt{\smash[b]{2}} ​/3).


Since P and Q represents the points of p and q,

∴ P = (4/3 , 22\sqrt{\smash[b]{2}} /3) & Q = (2/3 , 42\sqrt{\smash[b]{2}} /3)


Given that M is the midpoint of PQ.

Let M = (x,y).

Therefore,

x = ((4/3) + (2/3))/2 & y = ((22\sqrt{\smash[b]{2}} /3) + (42\sqrt{\smash[b]{2}} /3))/2

x = 3/3 = 1 & y = 32\sqrt{\smash[b]{2}} /3 = 2\sqrt{\smash[b]{2}}


M = (3/3 , 32\sqrt{\smash[b]{2}} /3)


Distance OM = (10)2+(20)2\sqrt{\smash[b]{(1 - 0)² + (\sqrt{\smash[b]{2}} - 0)²}}

OM = 1+2\sqrt{\smash[b]{1 + 2}}

OM = 3\sqrt{\smash[b]{3}}


Given that, OG = (2/3) × OM

Therefore, OG = 23\sqrt{\smash[b]{3}} /3


Let the slope of line OM be l, which is calculated as below :

l = (20)(\sqrt{\smash[b]{2}} - 0) /(1 - 0)

l = 2\sqrt{\smash[b]{2}}


Since, GM lies on OM, hence the slope of GM is the same as the slope of OM, i.e., l.

Let coordinates of G = (s,t)

Slope of GM = l

(t - 2\sqrt{\smash[b]{2}} )/(s - 1) = 2\sqrt{\smash[b]{2}} /1

(t - 2\sqrt{\smash[b]{2}} ) = 2\sqrt{\smash[b]{2}} & (s - 1) = 1

t = 22\sqrt{\smash[b]{2}}  & s = 2


Since GM is smaller than OM and it lies on OM and not outside it, hence we multiply the two coordinates by 1/3 to bring it to scale.

Therefore, t = 22\sqrt{\smash[b]{2}} /3 & s = 2/3.

i.e., G = (2/3 , 22\sqrt{\smash[b]{2}} /3 )


Distance PG =  ((4/3)(2/3))2+(22/322/3)2\sqrt{\smash[b]{((4/3) - (2/3))² + (2\sqrt{\smash[b]{2}}/3 - 2\sqrt{\smash[b]{2}}/3)² }}

PG = (2/3)2\sqrt{\smash[b]{(2/3)²}}

PG = 2/3


Distance QG = (2/32/3)2+((42/3)(22/3))2\sqrt{\smash[b]{(2/3 - 2/3)² + ((4\sqrt{\smash[b]{2}}/3) - (2\sqrt{\smash[b]{2}}/3))²}}

QG = (22/3)2\sqrt{\smash[b]{(2\sqrt{\smash[b]{2}}/3)²}}

QG = 22/32\sqrt{\smash[b]{2}}/3


Distance PQ = ((22/3)(42/3))2+((4/3)(2/3))2\sqrt{\smash[b]{((2\sqrt{\smash[b]{2}}/3) - (4\sqrt{\smash[b]{2}}/3))² + ((4/3) - (2/3))² }}


PQ = (8/9)+(4/9)\sqrt{\smash[b]{(8/9) + (4/9)}}

PQ = (12/9)\sqrt{\smash[b]{(12/9)}}

PQ = 23/3\sqrt{\smash[b]{3}}/3


PG² + QG² = (2/3)² + (22\sqrt{\smash[b]{2}} /3 )²

PG² + QG² = (4/9) + (8/9) = 12/9

PG² + QG² = (23\sqrt{\smash[b]{3}} /3)²

PG² + QG² = PQ²


The above equation is the equation of pythagoras theorem for a right angled triangle, i.e., a² + b² = c², where c is the hypotenuse and a & b are the sides making the right angle.


Therefore, PGQ is a right angled triangle with PQ as the hypotenuse. The angle opposite to the hypotenuse is the right angle.

Therefore, angle PGQ is a right angle.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS