Answer to Question #117769 in Algebra for Samuel

Question #117769
Given that z=1+i√z ,express in the form a+ib each of the complex numbers p=z+1/z ,q=z-1/z . In an Argand diagram ,P and Q are the points which represent p and q respectively . O is the origin , M is the midpoint of PQ and G is the point on OM such that OG=two-thirds of OM . Prove that angle PGQ is a right angle . Please I need the answers as soon as possible . Thanks
1
Expert's answer
2020-05-25T13:46:46-0400

Given, z = 1 + i"\\sqrt{\\smash[b]{2}}"


p = z + 1/z

p = 1 + i"\\sqrt{\\smash[b]{2}}" + 1/(1 + i"\\sqrt{\\smash[b]{2}}" )

p = 1 + i"\\sqrt{\\smash[b]{2}}" + (1 - i"\\sqrt{\\smash[b]{2}}" )/((1 + i"\\sqrt{\\smash[b]{2}}" ) × (1 - i"\\sqrt{\\smash[b]{2}}" ))

p = 1 + i"\\sqrt{\\smash[b]{2}}" + (1 - i"\\sqrt{\\smash[b]{2}}" )/(1² - (i"\\sqrt{\\smash[b]{2}}" )²)

p = 1 + i"\\sqrt{\\smash[b]{2}}" + (1 - i"\\sqrt{\\smash[b]{2}}" ​ )/(1 + 2)

p = 1 + i"\\sqrt{\\smash[b]{2}}" ​ + (1 - i"\\sqrt{\\smash[b]{2}}" ​ )/3

p = (1 + 1/3) + i("\\sqrt{\\smash[b]{2}}" - ("\\sqrt{\\smash[b]{2}}" ​/3))


Therefore, p = (4/3) + i(2"\\sqrt{\\smash[b]{2}}"/3), where a = (4/3) and b = (2"\\sqrt{\\smash[b]{2}}"​/3).


q = z - 1/z

q = 1 + i"\\sqrt{\\smash[b]{2}}" ​ - (1/(1 + i"\\sqrt{\\smash[b]{2}}" ​ ))

q = 1 + i"\\sqrt{\\smash[b]{2}}" ​ - ((1 - i"\\sqrt{\\smash[b]{2}}" ​ )/(1 + i"\\sqrt{\\smash[b]{2}}" )(1 - i"\\sqrt{\\smash[b]{2}}" ​ ))

q = 1 + i"\\sqrt{\\smash[b]{2}}" ​ - (1 - i"\\sqrt{\\smash[b]{2}}" ​ )/3

q = (1 - (1/3)) + i("\\sqrt{\\smash[b]{2}}" ​ + ("\\sqrt{\\smash[b]{2}}" ​/3))


Therefore, q = (2/3) + i(4"\\sqrt{\\smash[b]{2}}" ​/3), where a = (2/3) and b = (4"\\sqrt{\\smash[b]{2}}" ​/3).


Since P and Q represents the points of p and q,

∴ P = (4/3 , 2"\\sqrt{\\smash[b]{2}}" /3) & Q = (2/3 , 4"\\sqrt{\\smash[b]{2}}" /3)


Given that M is the midpoint of PQ.

Let M = (x,y).

Therefore,

x = ((4/3) + (2/3))/2 & y = ((2"\\sqrt{\\smash[b]{2}}" /3) + (4"\\sqrt{\\smash[b]{2}}" /3))/2

x = 3/3 = 1 & y = 3"\\sqrt{\\smash[b]{2}}" /3 = "\\sqrt{\\smash[b]{2}}"


M = (3/3 , 3"\\sqrt{\\smash[b]{2}}" /3)


Distance OM = "\\sqrt{\\smash[b]{(1 - 0)\u00b2 + (\\sqrt{\\smash[b]{2}} - 0)\u00b2}}"

OM = "\\sqrt{\\smash[b]{1 + 2}}"

OM = "\\sqrt{\\smash[b]{3}}"


Given that, OG = (2/3) × OM

Therefore, OG = 2"\\sqrt{\\smash[b]{3}}" /3


Let the slope of line OM be l, which is calculated as below :

l = "(\\sqrt{\\smash[b]{2}} - 0)" /(1 - 0)

l = "\\sqrt{\\smash[b]{2}}"


Since, GM lies on OM, hence the slope of GM is the same as the slope of OM, i.e., l.

Let coordinates of G = (s,t)

Slope of GM = l

(t - "\\sqrt{\\smash[b]{2}}" )/(s - 1) = "\\sqrt{\\smash[b]{2}}" /1

(t - "\\sqrt{\\smash[b]{2}}" ) = "\\sqrt{\\smash[b]{2}}" & (s - 1) = 1

t = 2"\\sqrt{\\smash[b]{2}}"  & s = 2


Since GM is smaller than OM and it lies on OM and not outside it, hence we multiply the two coordinates by 1/3 to bring it to scale.

Therefore, t = 2"\\sqrt{\\smash[b]{2}}" /3 & s = 2/3.

i.e., G = (2/3 , 2"\\sqrt{\\smash[b]{2}}" /3 )


Distance PG =  "\\sqrt{\\smash[b]{((4\/3) - (2\/3))\u00b2 + (2\\sqrt{\\smash[b]{2}}\/3 - 2\\sqrt{\\smash[b]{2}}\/3)\u00b2 }}"

PG = "\\sqrt{\\smash[b]{(2\/3)\u00b2}}"

PG = 2/3


Distance QG = "\\sqrt{\\smash[b]{(2\/3 - 2\/3)\u00b2 + ((4\\sqrt{\\smash[b]{2}}\/3) - (2\\sqrt{\\smash[b]{2}}\/3))\u00b2}}"

QG = "\\sqrt{\\smash[b]{(2\\sqrt{\\smash[b]{2}}\/3)\u00b2}}"

QG = "2\\sqrt{\\smash[b]{2}}\/3"


Distance PQ = "\\sqrt{\\smash[b]{((2\\sqrt{\\smash[b]{2}}\/3) - (4\\sqrt{\\smash[b]{2}}\/3))\u00b2 + ((4\/3) - (2\/3))\u00b2 }}"


PQ = "\\sqrt{\\smash[b]{(8\/9) + (4\/9)}}"

PQ = "\\sqrt{\\smash[b]{(12\/9)}}"

PQ = 2"\\sqrt{\\smash[b]{3}}\/3"


PG² + QG² = (2/3)² + (2"\\sqrt{\\smash[b]{2}}" /3 )²

PG² + QG² = (4/9) + (8/9) = 12/9

PG² + QG² = (2"\\sqrt{\\smash[b]{3}}" /3)²

PG² + QG² = PQ²


The above equation is the equation of pythagoras theorem for a right angled triangle, i.e., a² + b² = c², where c is the hypotenuse and a & b are the sides making the right angle.


Therefore, PGQ is a right angled triangle with PQ as the hypotenuse. The angle opposite to the hypotenuse is the right angle.

Therefore, angle PGQ is a right angle.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS