The formula for modulus and principle argument are as follows
"| z | = \\sqrt{\\smash[b]{x^2 + y^2}}"
"\\theta = arctan(y\/x)"
A) 3 - 4i
"| 3 - 4i | = \\sqrt{\\smash[b]{(3)^2+ (-4)^2}}"
r = "\\sqrt{\\smash[b]{9+ 16}}"
r = "\\sqrt{\\smash[b]{25}}"
r = 5
"\\theta = arctan(-4\/3)"
"\\theta" = - arctan(4/3)
"\\theta" = - 53.13°
B) -2 + i
"| -2 + i | = \\sqrt{\\smash[b]{(-2)^2 + (1)^2}}"
"r = \\sqrt{\\smash[b]{4+ 1}}"
"r = \\sqrt{\\smash[b]{5}}"
"\\arctan(1\/-2)"
"= - \\arctan(1\/2) = -26.56\u00b0"
Since the given complex number lies in the second quadrant.
Therefore, "\\theta =( -26.56 + 180)\u00b0"
"\\theta = 153.44\u00b0"
C)"z = 1\/(1 + i\\sqrt{\\smash[b]{3}})"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/((1 + i\\sqrt{\\smash[b]{3}})(1 - i\\sqrt{\\smash[b]{3}}))"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/(1\u00b2 - (i\\sqrt{\\smash[b]{3}})\u00b2)"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/(1 + 9)"
"z = (1 - i\\sqrt{\\smash[b]{3}})\/10"
"z = (1\/10) - i\\sqrt{\\smash[b]{3}}\/10"
"Modulus, r = \\sqrt{\\smash[b]{(1\/10)\u00b2 + (\\sqrt{\\smash[b]{3}}\/10)\u00b2}}"
"r = \\sqrt{\\smash[b]{(1\/100) + (3\/100}}"
"r = \\sqrt{\\smash[b]{(4\/100)}}"
"r = 2\/10"
"\\theta = arctan( -(\\sqrt{\\smash[b]{3}}\/10)\/(1\/10)"
"\\theta = arctan(- \\sqrt{\\smash[b]{3}})"
"\\theta = - ( \\pi \/ 3)"
"\\theta = - 60\u00b0"
D)"z = (7 - i)\/(-4 - 3i)"
"z = ((7 - i)(-4 + 3i))\/((-4 - 3i)(-4 + 3i))"
"z = (-28 + 21i + 4i + 3)\/((-4)\u00b2 - (3i)\u00b2)"
"z = (-25 + 25i)\/(16 + 9)"
"z = (-25 + 25i)\/25"
"z = -1 + i"
"Modulus, r = \\sqrt{\\smash[b]{(-1)\u00b2 + 1\u00b2}}"
"r = \\sqrt{\\smash[b]{1 + 1}}"
"r = \\sqrt{\\smash[b]{2}}"
"\\arctan(1\/(-1))"
"=\\arctan(-1)"
"= -45\\degree"
Since the given complex number lies in the second quadrant,
Therefore, "\\theta=(-45 + 180)\u00b0"
"\\theta = 135\u00b0"
E) "5(cos(\\pi\/3) +isin(\\pi\/3))"
"=5cos(\\pi\/3) +i5sin(\\pi\/3)"
"Modulus, r = \\sqrt{\\smash[b]{(5cos(\\pi\/3))\u00b2 + (5sin(\\pi\/3))\u00b2}}"
"r = \\sqrt{\\smash[b]{5\u00b2 (cos\u00b2(\\pi\/3) + sin\u00b2(\\pi\/3))}}"
"r = 5\\sqrt{\\smash[b]{1}}"
"r = 5"
"\\theta = arctan( 5sin(\\pi\/3) \/ 5cos(\\pi\/3) )"
"\\theta = arctan(tan(\\pi\/3))"
"\\theta =\\pi\/3 = 60\\degree"
F)"z = cos(2\\pi\/3) - sin(2\\pi\/3))"
"z = (-1\/2) - (\\sqrt{\\smash[b]{3}}\/2) = -(1 + \\sqrt{\\smash[b]{3}})\/2"
"Modulus, r =|-(1+\\sqrt{3})\/2|=(1+\\sqrt{3})\/2"
Since the given complex number is negative real number,
"\\theta =180\u00b0"
Comments
Leave a comment