Question #288861

two points A and B lie on a radial line of a rotating disk.The points are 50 mm apart.Va=214m/min and Vb=270m/min.Determine the radius of rotation for each of these points


1
Expert's answer
2022-01-20T08:11:02-0500

Let rA=r_A= the radius of rotation for point AA and let rB=r_B= the radius of rotation for point B.B.

Given rBrA=50 mm=0.05 m.r_B-r_A=50\ mm=0.05\ m.

The angular velocity ω\omega will be same. Then


vA=ωrA,vB=ωrBv_A=\omega r_A, v_B=\omega r_B

vArA=vBrB\dfrac{v_A}{r_A}=\dfrac{v_B}{r_B}

rB=vBvArAr_B=\dfrac{v_B}{v_A}r_A

Then


rA+0.05=270 m/min214 m/minrAr_A+0.05=\dfrac{270\ m/min}{214\ m/min}\cdot r_A

(270214)rA=10.7(270-214)r_A=10.7

rA=10.756 mr_A=\dfrac{10.7}{56}\ m

rA=0.191 m=191 mmr_A=0.191\ m=191\ mm

rB=0.191 m+0.05 m=0.241 m=241 mmr_B=0.191\ m+0.05\ m=0.241\ m=241\ mm


rA=191 mmr_A=191\ mm

rB=241 mmr_B=241\ mm

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS