Question #260642

A vertical diesel engine running at 350 rpm develops 600 kW and has 4 impulses per



revolution. If the fluctuation of energy is 25 per cent of the work done during each



impulse, estimate the cross-sectional area of the rim of the flywheel required to keep the



speed within 2 rpm of the mean speed when the mean peripheral speed of the rim is 1350



m/min. Cast iron has a density of 7.2 Mg/m3



.

1
Expert's answer
2021-11-05T03:29:01-0400

Mean angular velocity, ω=350rpm=36.6519rad/s=2199.115rad/min\omega=350rpm=36.6519rad/s=2199.115rad/min

Cs=2max deviationmean velocityC_s=\frac{2*max\ deviation}{mean\ velocity}

=2(2)350=0.011429=\frac{2(2)}{350}=0.011429

r=mean peripheral velocityωr=\frac{mean\ peripheral\ velocity}{\omega}

=13502199.115=0.61388=\frac{1350}{2199.115}=0.61388

m=ρ2πrAm=\rho 2πr*A

=72002π0.61388A=27771.2769A=7200*2π*0.61388*A=27771.2769A

I=mr2I=mr^2

=27771.2769A0.61388=10465.568A=27771.2769A*0.61388=10465.568A

Em=0.5Iω2E_m=0.5I\omega^2

=0.510465.568A36.65192=7029522A=0.5*10465.568A*36.6519^2=7029522A

i=350460=23.333i=\frac{350*4}{60}=23.333

E=P0.25i∆E=\frac{P*0.25}{i}

=6000000.2523.333=6428.6J=\frac{600000*0.25}{23.333}=6428.6J

E=2EmCs∆E=2E_mC_s

6428.6=27029522A0.0114296428.6=2*7029522A*0.011429

A=6428.6160680.813A=\frac{6428.6}{160680.813}

=0.0400085m2

40000mm2\approx 40000mm^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS