Question #200285

In a mechanism as shown in Fig. 8.39, the link AB rotates with a uniform angular velocity of 30 rad/s. The lengths of various links are : A B = 100 mm ; BC = 300 mm ; BD = 150 mm ; DE = 250 mm ; EF = 200 mm ; DG = 165 mm.

Determine the velocity and acceleration of G for the given configuration.



1
Expert's answer
2021-06-07T05:45:52-0400


ad=3.5cm=3.51.667=2.09m/sec=VD=3.5 cm = \frac{3.5}{1.667}= 2.09m/sec=V_D

ag=1cm=11.667=0.59m/sec=VG velocity of G=0.59m/secag=1cm = \frac{1}{1.667}=0.59m/sec=V_G \space velocity \space of \space G =0.59m/sec

ae=0.5cm=0.51.667=0.29m/sec=VEae=0.5cm=\frac{0.5}{1.667}=0.29m/sec =V_E

bc=4.5cm=2.699m/sec=VBCbc=4.5cm=2.699m/sec=V_{BC}

wbc=VBCBC=2.6990.3=8.99rad/secwbc=\frac{V{BC}}{BC}=\frac{2.699}{0.3}=8.99rad/sec

de=3.8=2.27m/sec=VDEde=3.8=2.27m/sec=V_{DE}

wDE=VDEDE=2.270.25=9.11rad/secw_{DE}=\frac{V_{DE}}{DE}=\frac{2.27}{0.25}=9.11rad/sec

wEF=VEEF=0.290.2=1.45rad/secw_{EF}=\frac{VE}{EF}=\frac{0.29}{0.2}=1.45 rad/sec


aBN=AB(wAB)2a_{BN}=AB(wAB)^2

=0.1(30)2=90m/s2=0.1(30)^2=90m/s^2

aBcn=BC(wBc)2a_{Bcn}=BC(w_{Bc})^2

=0.3(8.99)2=24.24m/s2=0.3(8.99)^2=24.24m/s^2

aDE=BE(wDE)2a_{DE}=BE(w_{DE})^2

=0.25(9.11)2=20.74m/s2=0.25(9.11)^2=20.74m/s^2

aEF=EF(wEF)2a_{EF}=EF(w{EF})^2

0.2(1.45)2=0.4205m/s20.2(1.45)^2=0.4205m/s^2

(SF)a=1090=0.1112cms2/m(SF)_a=\frac{10}{90}=0.1112cms^2/m

ac=18cm=ac=180.1112=162.002m/sec2ac=18cm=ac=\frac{18}{0.1112}=162.002m/sec^2

ad=10cm=ad=100.112=90.0009m/s2ad=10cm=ad=\frac{10}{0.112}=90.0009m/s^2

ag=19.3cm=ag=19.30.112=173.70002m/s2ag=19.3cm=ag=\frac{19.3}{0.112}=173.70002m/s^2

Acceleration of G =1737m/sec2=1737m/sec^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS